116 research outputs found

    Homogenization of diffuse delamination in composite laminates

    Get PDF
    Diffuse delamination induced by transverse cracking is usually the secondary damage mode when a composite laminate experiences tensile loading. The fist damage mechanism in such a laminate is transverse cracking which has been widely investigated with both analytical methods and " mechanism-based" constitutive laws. Delamination induced by matrix cracking is already studied extensively by analytical approaches, however, a proper homogenization way has not been proposed yet. In this paper, a modification to an available cohesive constitutive law is proposed which is capable of considering the effect of diffuse delamination without the necessity of consideration of an actual discontinuity between the layers. The proposed constitutive law is then compared against its equivalent models containing interlaminar discontinuity and it is shown that the obtained results from both models are in good. Then the proposed modification is used in Double Cantilever Beam (DCB) specimen and the obtained results are found coincident with the equivalent model with diffuse discontinuities at the interface. Finally, a damaged cross-ply laminate is modeled under the boundary conditions of tensile loading and also 3-point bending with and without the proposed cohesive modification. In tensile loading, the results of both cases are similar; however, it is shown that in bending, the unmodified cohesive law predicts the lateral stiffness larger than the proposed modification. The lateral stiffness of the equivalent model with discontinuities as crack indicates that the proposed modification is able to properly consider the lateral stiffness decrease

    Development of pseudo-ductile hybrid composites with discontinuous carbon- and continuous glass prepregs

    Get PDF
    This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available

    Multi-directional hybrid laminates-studying the effect of fragmentation and dispersed delamination on stress-strain curves of unnotched laminates using analytical modelling.

    Get PDF
    Hybridisation is one of the approaches to introduce pseudo-ductility to brittle composite materials. In this approach, two or more different types of fibre are combined and if the configuration and material constituents are well selected, the tensile response shows a gradual failure and pseudo-ductile strain. Different types of hybrid composites with continuous layers have been studied to produce pseudo-ductile tensile behaviour. However, most hybrid material studies to date have been focused on UniDirectional (UD) laminates which are not usually applied in industry due to poor transverse mechanical properties. In this study, the behaviour of multi-directional hybrid laminates made with UD hybrid sub-laminates is studied. The final goal is to introduce pseudo-ductility to layups with wider industrial applications. The effect of layup as well as the UD building-block stress-strain curve on the final stress-strain curve of the laminate is also studied. A new analytical approach based on Classical Laminate Theory is introduced in which the effect of different damage modes in UD hybrid laminates (fragmentation and dispersed delamination) is taken into account. The output of this method is the non-linear stress-strain curve of a multi-directional laminate with UD hybrid sub-laminates. This method is then used to study the effect of different parameters such as the mechanical properties of the constituents (low and high strain materials) and layup on the pseudo-ductility

    Numerical modelling of the damage modes in UD thin carbon/glass hybrid laminates

    Get PDF
    This paper proposes a new FE-based approach for modelling all of the possible damage modes in glass/carbon UD hybrid laminates in tensile loading. The damage development is modelled by two sets of cohesive elements, (i) periodically embedded in the carbon layer for modelling carbon fibre failure and (ii) at the glass/carbon interface to capture delamination. The analysis is stopped when the glass layer failure is predicted by integrating the stress distribution over the glass layer to calculate an equivalent stress for unit volume of the glass. The proposed method is validated against the experimental results and then used to simulate the progressive damage process of other hybrid configurations and finally produce a damage-mode map for this material set. The method can easily be applied to other hybrids to assess their performance by producing damage-mode maps. © 2014 Elsevier Ltd

    Damage analysis of pseudo-ductile thin-ply UD hybrid composites - A new analytical method

    Get PDF
    AbstractA new simple analytical approach for predicting all possible damage modes of Uni-Directional (UD) hybrid composites and their stress–strain response in tensile loading is proposed. To do so, the required stress level for the damage modes (fragmentation, delamination and final failure) are assessed separately. The damage process of the UD hybrid can then be predicted based on the order of the required stress for each damage mode. Using the developed analytical method, a new series of standard-thickness glass/thin-ply carbon hybrid composites was tested and a very good pseudo-ductile tensile response with 1.0% pseudo-ductile strain and no load drop until final failure was achieved. The yield stress value for the best tested layup was more than 1130MPa. The proposed analytical method is simple, very fast to run and it gives accurate results that can be used for designing thin-ply UD hybrid laminates with the desired tensile response and for conducting further parametric studies

    Hybrid specimens eliminating stress concentrations in tensile and compressive testing of unidirectional composites

    Get PDF
    AbstractTwo novel approaches are proposed for elimination of stress concentrations in tensile and compressive testing of unidirectional carbon/epoxy composites. An interlayer hybrid specimen type is proposed for tensile testing. The presented finite element study indicated that the outer continuous glass/epoxy plies suppress the stress concentrations at the grips and protect the central carbon/epoxy plies from premature failure, eliminating the need for end-tabs. The test results confirmed the benefits of the hybrid specimens by generating consistent gauge-section failures in tension. The developed hybrid four point bending specimen type and strain evaluation method were verified and applied successfully to determine the compressive failure strain of three different grade carbon/epoxy composite prepregs. Stable failure and fragmentation of the high and ultra-high modulus unidirectional carbon/epoxy plies were reported. The high strength carbon/epoxy plies exhibited catastrophic failure at a significantly higher compressive strain than normally observed

    Demonstration of pseudo-ductility in unidirectional hybrid composites made of discontinuous carbon/epoxy and continuous glass/epoxy plies

    Get PDF
    AbstractA new, partially discontinuous architecture is proposed to improve the mechanical performance of pseudo-ductile, unidirectional (UD) interlayer carbon/glass hybrid composites. The concept was successfully demonstrated in different laminates with high strength and high modulus carbon and S-glass epoxy UD prepregs. The novel hybrid architecture provided pseudo-ductile tensile stress–strain responses with a linear initial part followed by a wide plateau and a second linear part, all connected by smooth transitions. The best hybrid configuration showed 60% improvement in modulus compared to pure glass, 860MPa plateau stress and 2% pseudo-ductile strain. The initial modulus, the plateau stress and the overall tensile stress–strain response of each specimen configuration were predicted accurately
    • …
    corecore