20 research outputs found

    Cavity-enhanced light emission from electrically driven carbon nanotubes

    No full text
    An important advancement towards optical communication on a chip would be the development of integratable, nanoscale photonic emitters with tailored optical properties. Here we demonstrate the use of carbon nanotubes as electrically driven high-speed emitters in combination with a nanophotonic cavity that allows for exceptionally narrow linewidths. The one-dimensional photonic crystal cavities are shown to spectrally select desired emission wavelengths, enhance intensity and efficiently couple light into the underlying photonic network with high reproducibility. Under pulsed voltage excitation, we realize on-chip modulation rates in the GHz range, compatible with active photonic networks. Because the linewidth of the molecular emitter is determined by the quality factor of the photonic crystal, our approach effectively eliminates linewidth broadening due to temperature, surface interaction and hot-carrier injection
    corecore