208 research outputs found

    Comparative evaluation of set-level techniques in predictive classification of gene expression samples

    Get PDF
    Background: Analysis of gene expression data in terms of a priori-defined gene sets has recently received significant attention as this approach typically yields more compact and interpretable results than those produced by traditional methods that rely on individual genes. The set-level strategy can also be adopted with similar benefits in predictive classification tasks accomplished with machine learning algorithms. Initial studies into the predictive performance of set-level classifiers have yielded rather controversial results. The goal of this study is to provide a more conclusive evaluation by testing various components of the set-level framework within a large collection of machine learning experiments. Results: Genuine curated gene sets constitute better features for classification than sets assembled without biological relevance. For identifying the best gene sets for classification, the Global test outperforms the gene-set methods GSEA and SAM-GS as well as two generic feature selection methods. To aggregate expressions of genes into a feature value, the singular value decomposition (SVD) method as well as the SetSig technique improve on simple arithmetic averaging. Set-level classifiers learned with 10 features constituted by the Global test slightly outperform baseline gene-level classifiers learned with all original data features although they are slightly less accurate than gene-level classifiers learned with a prior feature-selection step. Conclusion: Set-level classifiers do not boost predictive accuracy, however, they do achieve competitive accuracy if learned with the right combination of ingredients. 1 Availability: Open-source, publicly available software was used for classifier learning and testing. The gene expression datasets and the gene set database used are also publicly available. The full tabulation of experimental results is available a

    The three-body problem of therapy with induced pluripotent stem cells

    Get PDF
    Regenerative medicine has a three-body problem: alignment of the dynamics of the genome, stem cell and patient. Focusing on the rare inherited fragile skin disorder epidermolysis bullosa, three recent innovative studies have used induced pluripotent stem cells and gene correction, revertant mosaicism or genome editing to advance the prospects of better cell-based therapeutics to restore skin structure and function for epidermolysis bullosa and potentially other inherited diseases

    Chitotriosidase as a biomarker of cerebral adrenoleukodystrophy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adrenoleukodystrophy (ALD) is an X-linked peroxisomal disorder characterized by the abnormal beta-oxidation of very long chain fatty acids (VLCFA). In 35-40% of children with ALD, an acute inflammatory process occurs in the central nervous system (CNS) leading to demyelination that is rapidly progressive, debilitating and ultimately fatal. Allogeneic hematopoietic stem cell transplantation (HSCT) can halt disease progression in cerebral ALD (C-ALD) if performed early. In contrast, for advanced patients the risk of morbidity and mortality is increased with transplantation. To date there is no means of quantitating neuroinflammation in C-ALD, nor is there an accepted measure to determine prognosis for more advanced patients.</p> <p>Methods</p> <p>As cellular infiltration has been observed in C-ALD, including activation of monocytes and macrophages, we evaluated the activity of chitotriosidase in the plasma and spinal fluid of boys with active C-ALD. Due to genotypic variations in the chitotriosidase gene, these were also evaluated.</p> <p>Results</p> <p>We document elevations in chitotriosidase activity in the plasma of patients with C-ALD (n = 38; median activity 1,576 ng/mL/hr) vs. controls (n = 16, median 765 ng/mL/hr, p = 0.0004), and in the CSF of C-ALD patients (n = 38; median activity 4,330 ng/mL/hr) vs. controls (n = 16, median 0 ng/mL/hr, p < 0.0001). In addition, activity levels of plasma and CSF chitotriosidase prior to transplant correlated with progression as determined by the Moser/Raymond functional score 1 year following transplantation (p = 0.002 and < 0.0001, respectively).</p> <p>Conclusions</p> <p>These findings confirm elevation of chitotriosidase activity in patients with active C-ALD, and suggest that these levels predict prognosis of patients with C-ALD undergoing transplantation.</p

    ABCB5+ mesenchymal stromal cells facilitate complete and durable wound closure in recessive dystrophic epidermolysis bullosa

    Get PDF
    Background and aims: Recessive dystrophic epidermolysis bullosa (RDEB) is a hereditary, rare, devastating and life-threatening skin fragility disorder with a high unmet medical need. In a recent international, single-arm clinical trial, treatment of 16 patients (aged 6–36 years) with three intravenous infusions of 2 × 106 immunomodulatory ABCB5+ dermal mesenchymal stromal cells (MSCs)/kg on days 0, 17 and 35 reduced disease activity, itch and pain. A post-hoc analysis was undertaken to assess the potential effects of treatment with ABCB5+ MSCs on the overall skin wound healing in patients suffering from RDEB. Methods: Documentary photographs of the affected body regions taken on days 0, 17, 35 and at 12 weeks were evaluated regarding proportion, temporal course and durability of wound closure as well as development of new wounds. Results: Of 168 baseline wounds in 14 patients, 109 (64.9%) wounds had closed at week 12, of which 63.3% (69 wounds) had closed already by day 35 or day 17. Conversely, 74.2% of the baseline wounds that had closed by day 17 or day 35 remained closed until week 12. First-closure ratio within 12 weeks was 75.6%. The median rate of newly developing wounds decreased significantly (P = 0.001) by 79.3%. Conclusions: Comparison of the findings with published data from placebo arms and vehicle-treated wounds in controlled clinical trials suggests potential capability of ABCB5+ MSCs to facilitate wound closure, prolongate wound recurrence and decelerate formation of new wounds in RDEB. Beyond suggesting therapeutic efficacy for ABCB5+ MSCs, the analysis might stimulate researchers who develop therapies for RDEB and other skin fragility disorders to not only assess closure of preselected target wounds but pay attention to the patients’ dynamic and diverse overall wound presentation as well as to the durability of achieved wound closure and the development of new wounds. Trial registration: Clinicaltrials.gov NCT03529877; EudraCT 2018-001009-98

    Rapid DNA replication origin licensing protects stem cell pluripotency

    Get PDF
    Complete and robust human genome duplication requires loading minichromosome maintenance (MCM) helicase complexes at many DNA replication origins, an essential process termed origin licensing. Licensing is restricted to G1 phase of the cell cycle, but G1 length varies widely among cell types. Using quantitative single-cell analyses, we found that pluripotent stem cells with naturally short G1 phases load MCM much faster than their isogenic differentiated counterparts with long G1 phases. During the earliest stages of differentiation toward all lineages, MCM loading slows concurrently with G1 lengthening, revealing developmental control of MCM loading. In contrast, ectopic Cyclin E overproduction uncouples short G1 from fast MCM loading. Rapid licensing in stem cells is caused by accumulation of the MCM loading protein, Cdt1. Prematurely slowing MCM loading in pluripotent cells not only lengthens G1 but also accelerates differentiation. Thus, rapid origin licensing is an intrinsic characteristic of stem cells that contributes to pluripotency maintenance
    corecore