6 research outputs found
Metrological Traceability Concept for Electrolytic Conductivity and pH
The metrological traceability concept links measurement results by a chain of calibrations to the quantity values of primary standards, which are realised by primary measurement procedures. These procedures undergo periodical international comparison measurements, in order to guarantee
worldwide comparability of measurement results. In this article we demonstrate how the metrological traceability concept applies to electrolytic conductivity and pH measurements. Furthermore we will outline promising activities in current metrological research to extend traceability of electrolytic
conductivity measurements down to the low ?S cm?1 level
Fertilizer value and nitrogen transfer efficiencies with clover-grass ley biomass based fertilizers
In temperate regions, legume-based green manures are a key element of organic rotations.
However, specialized farms lack sufficient mobile organic fertilizers. To gain a better understanding of the N flows and the nitrogen (N) and phosphorus (P) fertilizer value of different clover-grass-based fertilizers (biogas digestate, compost, silage and fresh clover-grass obtained from clover grass ley biomass), we assessed their fertilizer value. Nitrogen and P offtake by the ryegrass was used to assess the shortterm effects. The data were completed using model calculations to assess the field-to-field N-transfer efficiencies and the overall N-transfer efficiencies.
The greatest plant N offtake was achieved with digestates (64%) and the lowest from the compost (6%) and solid farmyard manure (14%). The mineralization rate was positively related to the NH4+– N/total N ratio (P\0.01, r2 = 0.82). The model calculations indicate that the overall short-term N-transfer efficiencies are driven by the field to-field N-transfer efficiency and the field-to-crop transfer efficiency. However, in the long term, model calculations indicate that a high field-to-field N-transfer efficiency is the key strategic approach when aiming to achieve cropping systems with a high overall longterm N-transfer efficiency. Consequently, the results showed that aerobic decomposition (composting) significantly lowered field-to-field as well as field-tocrop N-transfer rates. The relative P use efficiency strongly differed among the fertilizers. In particular, freshly cut clover-grass and solid manure increased P availability and led to an increase of plant P offtake that was higher than the amount of P supplied
Genomic analysis of sewage from 101 countries reveals global landscape of antimicrobial resistance
Antimicrobial resistance (AMR) is a major threat to global health. Understanding the emergence, evolution, and transmission of individual antibiotic resistance genes (ARGs) is essential to develop sustainable strategies combatting this threat. Here, we use metagenomic sequencing to analyse ARGs in 757 sewage samples from 243 cities in 101 countries, collected from 2016 to 2019. We find regional patterns in resistomes, and these differ between subsets corresponding to drug classes and are partly driven by taxonomic variation. The genetic environments of 49 common ARGs are highly diverse, with most common ARGs carried by multiple distinct genomic contexts globally and sometimes on plasmids. Analysis of flanking sequence revealed ARG-specific patterns of dispersal limitation and global transmission. Our data furthermore suggest certain geographies are more prone to transmission events and should receive additional attention