4,623 research outputs found

    Laser-induced degradation and damage morphology in polymer optical fibers

    Get PDF
    The radiation of pulsed laser systems can generate changes in various materials. On the one hand, these modifications can be used for a variety of applications i.e. laser welding, cutting and many more [1]. The precision and quality depends on the material and laser parameters. On the other hand, material changes are not always desired in other applications. When using optical materials such as optical fibers as a light guide or as a sensor, laser-induced damage effects inside the fiber are to be prevented to ensure constant light guidance and the reliable monitoring of a desired parameter. Therefore, investigations for quality assurance need to be performed. For this reason, this work investigates laserinduced damage in polymer optical fibers (POF) using a nanosecond pulsed laser system at a wavelength of 532 nm. The impact of different laser and fiber parameters on the long-term degradation behavior is observed. In addition, the overall degradation behavior as well as the knowledge gained by analyzing the damage morphology and distribution will be used to obtain a better understanding of the damage mechanisms

    Charge transport through single molecules, quantum dots, and quantum wires

    Full text link
    We review recent progresses in the theoretical description of correlation and quantum fluctuation phenomena in charge transport through single molecules, quantum dots, and quantum wires. A variety of physical phenomena is addressed, relating to co-tunneling, pair-tunneling, adiabatic quantum pumping, charge and spin fluctuations, and inhomogeneous Luttinger liquids. We review theoretical many-body methods to treat correlation effects, quantum fluctuations, nonequilibrium physics, and the time evolution into the stationary state of complex nanoelectronic systems.Comment: 48 pages, 14 figures, Topical Review for Nanotechnolog

    Stable isotope dilution analysis of N-acetylaspartic acid in CSF, blood, urine and amniotic fluid: Accurate postnatal diagnosis and the potential for prenatal diagnosis of canavan disease

    Get PDF
    A sensitive and selective analytical technique is described for the determination of N-acetylaspartic acid in body fluids using stable isotope dilution in combination with positive chemical ionization mass spectrometry with selected ion monitoring. Control mean and ranges have been established: in urine 19.5 and 6.6-35.4 μmol/mmol creat.; in plasma 0.44 and 0.17-0.81 μmol/L; in cerebrospinal fluid 1.51 and 0.25-2.83 μmol/L; and in amniotic fluid 1.27 and 0.30-2.55 μmol/L. In a patient with Canavan disease, N-acetylaspartic acid concentration was elevated 80-fold in urine and 20-fold in plasma compared to the control means. A subsequent pregnancy of the mother was monitored and the N-acetylaspartic acid concentration in the amniotic fluid was within the control range and a healthy child was born

    Prototyping of petalets for the Phase-II Upgrade of the silicon strip tracking detector of the ATLAS Experiment

    Full text link
    In the high luminosity era of the Large Hadron Collider, the HL-LHC, the instantaneous luminosity is expected to reach unprecedented values, resulting in about 200 proton-proton interactions in a typical bunch crossing. To cope with the resultant increase in occupancy, bandwidth and radiation damage, the ATLAS Inner Detector will be replaced by an all-silicon system, the Inner Tracker (ITk). The ITk consists of a silicon pixel and a strip detector and exploits the concept of modularity. Prototyping and testing of various strip detector components has been carried out. This paper presents the developments and results obtained with reduced-size structures equivalent to those foreseen to be used in the forward region of the silicon strip detector. Referred to as petalets, these structures are built around a composite sandwich with embedded cooling pipes and electrical tapes for routing the signals and power. Detector modules built using electronic flex boards and silicon strip sensors are glued on both the front and back side surfaces of the carbon structure. Details are given on the assembly, testing and evaluation of several petalets. Measurement results of both mechanical and electrical quantities are shown. Moreover, an outlook is given for improved prototyping plans for large structures.Comment: 22 pages for submission for Journal of Instrumentatio

    Liver resection or combined chemoembolization and radiofrequency ablation improve survival in patients with hepatocellular carcinoma

    Get PDF
    Background/ Aims: To evaluate the long-term outcome of surgical and non-surgical local treatments of patients with hepatocellular carcinoma (HCC). Methods: We stratified a cohort of 278 HCC patients using six independent predictors of survival according to the Vienna survival model for HCC (VISUM- HCC). Results: Prior to therapy, 224 HCC patients presented with VISUM stage 1 (median survival 18 months) while 29 patients were classified as VISUM stage 2 (median survival 4 months) and 25 patients as VISUM stage 3 (median survival 3 months). A highly significant (p < 0.001) improved survival time was observed in VISUM stage 1 patients treated with liver resection ( n = 52; median survival 37 months) or chemoembolization (TACE) and subsequent radiofrequency ablation ( RFA) ( n = 44; median survival 45 months) as compared to patients receiving chemoembolization alone (n = 107; median survival 13 months) or patients treated by tamoxifen only (n = 21; median survival 6 months). Chemoembolization alone significantly (p <= 0.004) improved survival time in VISUM stage 1 - 2 patients but not (p = 0.341) in VISUM stage 3 patients in comparison to those treated by tamoxifen. Conclusion: Both liver resection or combined chemoembolization and RFA improve markedly the survival of patients with HCC

    Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC

    Full text link
    While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative "Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC" (PETTL), which was supported by the Helmholtz Alliance "Physics at the Terascale" during the years 2013 and 2014. The aim of the project was to share experience and to work together on key areas of mutual interest during the R&D phase of these upgrades. The project concentrated on five areas, namely exchange of experience, radiation hardness of silicon sensors, low mass system design, automated precision assembly procedures, and irradiations. This report summarizes the main achievements

    Matrix metalloproteinase-9 activity and a downregulated Hedgehog pathway impair blood-brain barrier function in an <i>in vitro</i> model of CNS tuberculosis

    Get PDF
    Central nervous system tuberculosis (CNS TB) has a high mortality and morbidity associated with severe inflammation. The blood-brain barrier (BBB) protects the brain from inflammation but the mechanisms causing BBB damage in CNS TB are uncharacterized. We demonstrate that Mycobacterium tuberculosis (Mtb) causes breakdown of type IV collagen and decreases tight junction protein (TJP) expression in a co-culture model of the BBB. This increases permeability, surface expression of endothelial adhesion molecules and leukocyte transmigration. TJP breakdown was driven by Mtb-dependent secretion of matrix metalloproteinase (MMP)-9. TJP expression is regulated by Sonic hedgehog (Shh) through transcription factor Gli-1. In our model, the hedgehog pathway was downregulated by Mtb-stimulation, but Shh levels in astrocytes were unchanged. However, Scube2, a glycoprotein regulating astrocyte Shh release was decreased, inhibiting Shh delivery to brain endothelial cells. Activation of the hedgehog pathway by addition of a Smoothened agonist or by addition of exogenous Shh, or neutralizing MMP-9 activity, decreased permeability and increased TJP expression in the Mtb-stimulated BBB co-cultures. In summary, the BBB is disrupted by downregulation of the Shh pathway and breakdown of TJPs, secondary to increased MMP-9 activity which suggests that these pathways are potential novel targets for host directed therapy in CNS TB
    corecore