1,596 research outputs found
Cyclooxygenase 2 promotes cell survival by stimulation of dynein light chain expression and inhibition of neuronal nitric oxide synthase activity
Cyclooxygenase 2 (COX-2) inhibits nerve growth factor (NGF) withdrawal apoptosis in differentiated PC12 cells. The inhibition of apoptosis by COX-2 was concomitant with prevention of caspase 3 activation. To understand how COX-2 prevents apoptosis, we used cDNA expression arrays to determine whether COX-2 regulates differential expression of apoptosis-related genes. The expression of dynein light chain (DLC) (also known as protein inhibitor of neuronal nitric oxide synthase [PIN]) was significantly stimulated in PC12 cells overexpressing COX-2. The COX-2-dependent stimulation of DLC expression was, at least in part, mediated by prostaglandin E(2). Overexpression of DLC also inhibited NGF withdrawal apoptosis in differentiated PC12 cells. Stimulation of DLC expression resulted in an increased association of DLC/PIN with neuronal nitric oxide synthase (nNOS), thereby reducing nNOS activity. Furthermore, nNOS expression and activity were significantly increased in differentiated PC12 cells after NGF withdrawal. This increased nNOS activity as well as increased nNOS dimer after NGF withdrawal were inhibited by COX-2 or DLC/PIN overexpression. An nNOS inhibitor or a membrane-permeable superoxide dismutase (SOD) mimetic protected differentiated PC12 cells from NGF withdrawal apoptosis. In contrast, NO donors induced apoptosis in differentiated PC12 cells and potentiated apoptosis induced by NGF withdrawal. The protective effects of COX-2 on apoptosis induced by NGF withdrawal were also overcome by NO donors. These findings suggest that COX-2 promotes cell survival by a mechanism linking increased expression of prosurvival genes coupled to inhibition of NO- and superoxide-mediated apoptosis
PoTeC: A German Naturalistic Eye-tracking-while-reading Corpus
The Potsdam Textbook Corpus (PoTeC) is a naturalistic
eye-tracking-while-reading corpus containing data from 75 participants reading
12 scientific texts. PoTeC is the first naturalistic eye-tracking-while-reading
corpus that contains eye-movements from domain-experts as well as novices in a
within-participant manipulation: It is based on a 2x2x2 fully-crossed factorial
design which includes the participants' level of study and the participants'
discipline of study as between-subject factors and the text domain as a
within-subject factor. The participants' reading comprehension was assessed by
a series of text comprehension questions and their domain knowledge was tested
by text-independent background questions for each of the texts. The materials
are annotated for a variety of linguistic features at different levels. We
envision PoTeC to be used for a wide range of studies including but not limited
to analyses of expert and non-expert reading strategies. The corpus and all the
accompanying data at all stages of the preprocessing pipeline and all code used
to preprocess the data are made available via GitHub:
https://github.com/DiLi-Lab/PoTeC
ScanDL: A Diffusion Model for Generating Synthetic Scanpaths on Texts
Eye movements in reading play a crucial role in psycholinguistic research studying the cognitive mechanisms underlying human language processing. More recently, the tight coupling between eye movements and cognition has also been leveraged for language-related machine learning tasks such as the interpretability, enhancement, and pre-training of language models, as well as the inference of reader- and text-specific properties. However, scarcity of eye movement data and its unavailability at application time poses a major challenge for this line of research. Initially, this problem was tackled by resorting to cognitive models for synthesizing eye movement data. However, for the sole purpose of generating human-like scanpaths, purely data-driven machine-learning-based methods have proven to be more suitable. Following recent advances in adapting diffusion processes to discrete data, we propose ScanDL, a novel discrete sequence-to-sequence diffusion model that generates synthetic scanpaths on texts. By leveraging pre-trained word representations and jointly embedding both the stimulus text and the fixation sequence, our model captures multi-modal interactions between the two inputs. We evaluate ScanDL within- and across-dataset and demonstrate that it significantly outperforms state-of-the-art scanpath generation methods. Finally, we provide an extensive psycholinguistic analysis that underlines the model's ability to exhibit human-like reading behavior. Our implementation is made available at https://github.com/DiLi-Lab/ScanDL
ScanDL: A Diffusion Model for Generating Synthetic Scanpaths on Texts
Eye movements in reading play a crucial role in psycholinguistic research
studying the cognitive mechanisms underlying human language processing. More
recently, the tight coupling between eye movements and cognition has also been
leveraged for language-related machine learning tasks such as the
interpretability, enhancement, and pre-training of language models, as well as
the inference of reader- and text-specific properties. However, scarcity of eye
movement data and its unavailability at application time poses a major
challenge for this line of research. Initially, this problem was tackled by
resorting to cognitive models for synthesizing eye movement data. However, for
the sole purpose of generating human-like scanpaths, purely data-driven
machine-learning-based methods have proven to be more suitable. Following
recent advances in adapting diffusion processes to discrete data, we propose
ScanDL, a novel discrete sequence-to-sequence diffusion model that generates
synthetic scanpaths on texts. By leveraging pre-trained word representations
and jointly embedding both the stimulus text and the fixation sequence, our
model captures multi-modal interactions between the two inputs. We evaluate
ScanDL within- and across-dataset and demonstrate that it significantly
outperforms state-of-the-art scanpath generation methods. Finally, we provide
an extensive psycholinguistic analysis that underlines the model's ability to
exhibit human-like reading behavior. Our implementation is made available at
https://github.com/DiLi-Lab/ScanDL.Comment: EMNLP 202
Competition of crystal field splitting and Hund's rule coupling in two-orbital magnetic metal-insulator transitions
Competition of crystal field splitting and Hund's rule coupling in magnetic
metal-insulator transitions of half-filled two-orbital Hubbard model is
investigated by multi-orbital slave-boson mean field theory. We show that with
the increase of Coulomb correlation, the system firstly transits from a
paramagnetic (PM) metal to a {\it N\'{e}el} antiferromagnetic (AFM) Mott
insulator, or a nonmagnetic orbital insulator, depending on the competition of
crystal field splitting and the Hund's rule coupling. The different AFM Mott
insulator, PM metal and orbital insulating phase are none, partially and fully
orbital polarized, respectively. For a small and a finite crystal
field, the orbital insulator is robust. Although the system is nonmagnetic, the
phase boundary of the orbital insulator transition obviously shifts to the
small regime after the magnetic correlations is taken into account. These
results demonstrate that large crystal field splitting favors the formation of
the orbital insulating phase, while large Hund's rule coupling tends to destroy
it, driving the low-spin to high-spin transition.Comment: 4 pages, 4 figure
The Effectiveness of Exercise Interventions for the Management of Frailty: A Systematic Review
This systematic review examines the effectiveness of current exercise interventions for the management of frailty. Eight electronic databases were searched for randomized controlled trials that identified their participants as “frail” either in the title, abstract, and/or text and included exercise as an independent component of the intervention. Three of the 47 included studies utilized a validated definition of frailty to categorize participants. Emerging evidence suggests that exercise has a positive impact on some physical determinants and on all functional ability outcomes reported in this systematic review. Exercise programs that optimize the health of frail older adults seem to be different from those recommended for healthy older adults. There was a paucity of evidence to characterize the most beneficial exercise program for this population. However, multicomponent training interventions, of long duration (≥5 months), performed three times per week, for 30–45 minutes per session, generally had superior outcomes than other exercise programs. In conclusion, structured exercise training seems to have a positive impact on frail older adults and may be used for the management of frailty
The Magic Number Problem for Subregular Language Families
We investigate the magic number problem, that is, the question whether there
exists a minimal n-state nondeterministic finite automaton (NFA) whose
equivalent minimal deterministic finite automaton (DFA) has alpha states, for
all n and alpha satisfying n less or equal to alpha less or equal to exp(2,n).
A number alpha not satisfying this condition is called a magic number (for n).
It was shown in [11] that no magic numbers exist for general regular languages,
while in [5] trivial and non-trivial magic numbers for unary regular languages
were identified. We obtain similar results for automata accepting subregular
languages like, for example, combinational languages, star-free, prefix-,
suffix-, and infix-closed languages, and prefix-, suffix-, and infix-free
languages, showing that there are only trivial magic numbers, when they exist.
For finite languages we obtain some partial results showing that certain
numbers are non-magic.Comment: In Proceedings DCFS 2010, arXiv:1008.127
Contribution of brown carbon to light absorption in emissions of European residential biomass combustion appliances
Residential biomass combustion significantly contributes to light-absorbing carbonaceous aerosols in the atmosphere, impacting the earth's radiative balance at regional and global levels. This study investigates the contribution of brown carbon (BrC) to the total particulate light absorption in the wavelength range of 370–950 nm (BrC370–950) and the particulate absorption Ångström exponents (AAE470/950) in 15 different European residential combustion appliances using a variety of wood-based fuels. BrC370–950 was estimated to be from 1 % to 21 % for wood log stoves and 10 % for a fully automatized residential pellet boiler. Correlations between the ratio of organic to elemental carbon (OC / EC) and BrC370–950 indicated that a one-unit increase in OC / EC corresponded to approximately a 14 % increase in BrC370–950. Additionally, BrC370–950 was clearly influenced by the fuel moisture content and the combustion efficiency, while the effect of the combustion appliance type was less prominent. AAE470/950 of wood log combustion aerosols ranged from 1.06 to 1.61. By examining the correlation between AAE470/950 and OC / EC, an AAE470/950 close to unity was found for pure black carbon (BC) particles originating from residential wood combustion. This supports the common assumption used to differentiate light absorption caused by BC and BrC. Moreover, diesel aerosols exhibited an AAE470/950 of 1.02, with BrC contributing only 0.66 % to the total absorption, aligning with the assumption employed in source apportionment. These findings provide important data to assess the BrC from residential wood combustion with different emission characteristics and confirm that BrC can be a major contributor to particulate UV and near-UV light absorption for northern European wood stove emissions with relatively high OC / EC ratios.</p
- …