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Abstract. In this paper we aim to develop a controller that allows a
robot to traverse an structured environment. The approach we use is
to decompose the environment into simple sub-environments that we
use as basis for evolving the controller. Specifically, we decompose a nar-
row corridor environment into four different sub-environments and evolve
controllers that generalize to traverse two larger environments composed
of the sub-environments. We also study two strategies for presenting the
sub-environments to the evolutionary algorithm: all sub-environments at
the same time and in sequence. Results show that by using a sequence
the evolutionary algorithm can find a controller that performs well in
all sub-environments more consistently than when presenting all sub-
environments together. We conclude that environment decomposition
is an useful approach for evolving controllers for structured environ-
ments and that the order in which the decomposed sub-environments
are presented in sequence impacts the performance of the evolutionary
algorithm.

Keywords: Evolutionary robotics · Environment decomposition · Sequ-
ential evolution

1 Introduction

In this paper we demonstrate how to evolve one robot controller that is able
to traverse a structured environment. The approach consists of decomposing a
structured environment, such as an office building or a pipe system, into sim-
pler ones, like turns or doorways, and evolve the robot to traverse these sub-
environments. A robot that can perform well in these sub-environments can
generalize its behavior to any larger environment composed of the simpler ones.

The robot used is a sensor-less snake-like robot built using a simple 1 degree
of freedom modular robot. There are two general controller types a robot can
use, hierarchical controllers, and monolithic controllers. Using a hierarchical con-
troller different individual controllers could be used for different sub-environments
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requiring a decision mechanism to decide between all of them. A decision
mechanism cannot be implemented in our current robot due to the lack of sen-
sors, so we make use of a monolithic controller instead. The controller used is
based on central pattern generators. Central pattern generators are commonly
used to control the locomotion of complex robots that have limited computational
capabilities [1].

Using a monolithic controller we have to ensure that it works in all sub-
environments. Two methods can be used for this purpose: One is to evaluate
the fitness of all individuals in all sub-environments at the same time. In this
case performance in all sub-environments should be a compound measure of the
fitness. Another approach is to introduce the sub-environments in sequence to the
evolutionary algorithm. One individual is evaluated in the next sub-environment
only if it performs well in the last one.

In our work a narrow corridor environment is decomposed into turns and
bumps. Using the approaches of evaluating individuals in all sub-environments at
the same time and in sequence we evolve controllers for these sub-environments
and compare how fast and consistently a solution can be found. The best con-
troller obtained by the evolutionary process is tested in two environments com-
posed of the sub-environments and it is shown that it can successfully traverse
through both of them. Results also show that presenting the sub-environments
in a sequence improves how consistently the evolutionary process can find a
solution compared to when there is no sequence present and that the order of
the sequence impacts how fast a controller can be found. Overall, environment
decomposition is shown to be an an useful approach for evolving controllers for
structured environments.

2 Related Work

Previous task decomposition work focuses on generating behaviors for specific
tasks that are combined to solve a main task [2–7]. In [2] Lee et al. use task
decomposition to evolve controllers for pushing a box to a goal with a Khepera
robot by evolving controllers for the sub tasks of getting to the box, circling the
box and pushing the box in a certain direction. Controllers are evolved inde-
pendently for each task and a decision mechanism is needed for all the different
evolved controllers to work as one [3,4]. Alternatively to task decomposition, in
our work instead of decomposing a given task we are given an environment that
we decompose into sub-environments that could also be seen as sub-tasks.

Also, in task decomposition, it has been shown that introducing a sequence
when learning multiple tasks improves the speed and reliability of the evolution-
ary algorithm [5,8–10]. Layered learning and incremental learning introduce the
idea of a sequence in how the robot controllers are evolved for different tasks.
In layered learning decomposed tasks are solved by evolving the simplest tasks
separately first and then stopping the process, freezing the found solutions and
using them to start new evolution processes to solve the next more complex ones.
The sequence continues until the goal task has been solved. In [6] Stone et al.



Evolving Robot Controllers for Structured Environments 797

evolve a controller for three tasks in a robot soccer environment: ball intercep-
tion, pass evaluation and pass selection. Co-evolution is also used along layered
learning to generate controllers for subtasks, in [3] Whiteson et al. co-evolve dif-
ferent layers at the same time as well as the decision mechanism. As it uses deci-
sion mechanisms, layered learning is a case of evolving hierarchical controllers.
Here we focus on a sensor-less robot due to the ease of hardware implementation
so any sensor-based decision mechanism is not possible to implement. Instead
we are using a monolithic controller for it to be good in all sub-environments at
the same time, something similar to what is done in incremental evolution.

In incremental evolution [7] the same task is presented to the evolutionary
algorithm with various levels of difficulty starting by the easiest one. As the robot
is able to solve the task the difficulty is risen gradually until the robot learns the
behaviors needed to solve a desired level of complexity in the given task. The
same controller is expected to include the new found behaviors without using
extra parts or modules. The changes involve gradually moving the position of
a goal to force the appearance of different behaviors [8], changing the height of
a wall that a robot has to go over, as in [11,12], or increasing the sharpness
of a curve in a maze for a mobile robot to learn how to turn [13]. Although
incremental evolution involves changing the environment it remains relatively
similar through the changes. Bongard et al. [8–10] show that the order in which
different behaviors are incrementally learned is important for the success rate of
the evolutionary process. In their work a quadruped robot with grasping capa-
bilities is more successful in learning how to manipulate an object first and then
move towards it than the other way around. Similarly, one could specify the
ordering of the sub-environments in the sequence presented to the evolution-
ary algorithm to also change the performance of an environment decomposition
learning process. Multi-objective optimization has also been used in incremental
evolution to evolve behaviors without specifying a sequence [14].

The main contributions of this paper are: the idea of evolving a monolithic
controller for structured environments by using environment decomposition as
an alternative to task decomposition. Additionally we investigate whether intro-
ducing a sequence in how the sub-environments are presented could make the
evolutionary process find a solution faster and more consistently and if the order
of the sequence impacts the performance of the algorithm.

3 Experimental Setup

3.1 Simulated Modular Robot and Environments

We have modeled a snake-like robot in the V-REP simulator. V-REP is an
open source robot simulator that can work with different physics engines [15].
We create a chain of 8 modules using the simple cubic modular robot shown
in Fig. 1 that has only one rotational degree of freedom. Modular reconfigurable
robots are a special class of robots that are built from basic units, called modules,
with or without autonomy, that can reconfigure themselves to perform different
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Table 1. Parameters of the simulation

Parameter Value

Physics Engine Bullet

Module mass 0.14 (Kg)

Max. Joint Torque 2.5 (Nm)

Dimensions 10 × 10 × 15 (cm)

Physics Time Step 0.0135 (s)

Table 2. Parameters of the controller

Parameter Value Range

ar 50 -

ax 30 -

ω 2π × 0.65 -

wij 7 -

R - [−1; 1]

X - [−1; 1]

Δφ - [−π/2; π/2]

tasks [16]. The module model used here is designed to be easily implemented
and a first prototype has already been designed and built [17].

Each module can be connected to other modules using two connection sur-
faces. The module can be oriented in two ways: with it’s rotational axis parallel
to the horizontal plane or with the rotational axis parallel to the vertical plane.
Using modules in each orientation different types of chains can be generated.
In this paper a fixed chain was built with alternating orientation. The physical
parameters used for the simulation can be seen in Table 1.

Fig. 1. The basic module is made of two cubic parts linked by a rotational joint. Each
part has only one connector face.

Each module is controlled using an internal central pattern generator(CPG).
Central pattern generators are neural structures that can be found in the spine of
animals and that can generate complex movements from basic input. The CPGs
inside the modules are modeled as phase coupled nonlinear oscillators as in [1]
which provide a sinusoidal output that can be controlled by using three main
parameters: Amplitude R, offset X and phase difference with neighbors Δφ,
providing a simple way of achieving coordinated movement from distributed
controllers.

Equation (1) shows the coupling between different oscillator phases as a
weighted sum, Eqs. (2) and (3) describe control laws that make the amplitude
r and offset x in the output (4) converge to the desired values R and X. The
parameters ax, ar and wi are weights used to control the speed of convergence of
the amplitude and offset to their respective set points and the coupling strength
of the phase difference, their values can be seen on Table 2. The output θ in
Eq. (4) controls the movement of the rotational joint in each module. For this
experiment the same value of amplitude, offset and phase difference is used for
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all modules and will be changed by the evolutionary algorithm. The values each
parameter can take can be seen in Table 2.

φ̇i = ωi +
∑

j

(wijSin(φj − φi − Δφij)) (1)

r̈i = ar(
ar

4
(Ri − ri) − ṙi) (2)

ẍi = ax(
ax

4
(Xi − xi) − ẋi) (3)

θi = xi + riCos(φi) (4)

The narrow corridor environment shown in Fig. 2, in which the robot can
find turns and obstacles as well as long empty segments is decomposed into four
sub-environments (Fig. 3): Straight, Turnleft, TurnRight and Bump. By being
good in all four sub-environments the robot should be able to move through
any narrow corridor composed of these parts. The environments have been built
using walls and obstacles available in the simulator.

(a) (b)

Fig. 2. Two narrow corridors with turns and obstacles. The light blue rectangle is a
small bump. The circle represents the goal area (Colour figure online).

The starting position of the last module of the chain in all four sub-
environments can be seen in Fig. 3d. Sub-environment Straight (Fig. 3a) is a
straight corridor in front of the starting position, TurnLeft (Fig. 3c) its a left
turn after a shorter straight corridor, Bump (Fig. 3b) has a step that doubles
the robot’s height after some distance from the start of the same straight corri-
dor as in Straight, and TurnRight (Fig. 3d) is a turn in the opposite direction of
TurnLeft. The robot should move from its starting position to the end of each
corridor in a limited amount of time T , and all sub-environments have a similar
distance from the initial position of the robot to the goal position (circle at the
end of the corridor).
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(a) Straight (b) Bump

(c) TurnLeft (d) TurnRight

Fig. 3. The four sub-environments in which the robot is evaluated. The circle represents
the goal area, fitness is measured as the distance to the goal along the corridor in each
case. The initial position of the last module of the robot is shown in (d).

3.2 Evolutionary Algorithm

To evolve the 3 controller parameters of the CPG, namely amplitude R, offset
X and phase difference with neighbors Δφ, for the robot to get out of different
sub-environments we used the Differential Evolution Algorithm [18], the specific
parameters used for the algorithm are displayed in Table 3. The algorithm was
implemented using the JEAF [19] framework on a 32 core AMD Opteron Linux
machine. The fitness function for each sub-environment is defined in two stages:
first, if the robot is not able to get out of the corridor under the maximum
amount of time the fitness will be the distance to the goal D plus the maximum
time allowed for the trial T in simulation time. Once the robot gets to the goal
circle (Fig. 3) its fitness will be the time it takes to complete the maze t, so the
fitness for each sub-environment looks like this:

F =

{
D + T if goal not reached
t if goal reached

(5)

In this way the robot can reach the goal and continue to improve its fitness
by being quicker. The robot controller is evolved in two ways:
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Table 3. Differential Evolution Parameters

Parameter Value

Population Size 32

Number of Generations 300

F 0.9

CR 0.9

Max. Evaluation time T 40 (s)

Learning All Sub-environments at once. For this scenario the controller is
evaluated in all four sub-environments and the total fitness is measured using two
methods: the average fitness and the worst fitness of all four. In the case of the
worst fitness the robot has to have a good performance in all sub-environments
in order to have a good fitness. An individual has reached the goal in all sub-
environments if its fitness is less than T , which is the same for all four sub-
environments.

Learning All Sub-environments in Sequence. The robot is evaluated in all
four sub-environments in a sequential fashion. Only if the individual being evalu-
ated is able to get to the goal of one sub-environment under the maximum allowed
time it is evaluated in the next sub-environment until an individual is capable
of getting out of all four sub-environments. Sub-environments are shown to the
robot in three different experiments: Straight - TurnLeft - Bump - TurnRight (S1),
Straight - Bump - TurnLeft - TurnRight (S2) and Straight - TurnRight - Turn-
Left - Bump (S3). These first three sequences cover all permutations of the sub-
environments TurnLeft, TurnRight and Bump that are no mirrors of each other,
that is turning left and then turning right is considered to be the same as turning
right and then turning left. The Straight sub-environment is always shown to the
robot at the beginning of these three initial sequences as it is the simplest and all
the others include a straight element in the beginning.

The last sequence considered (Bump - TurnRight - TurnLeft - Straight, S4)
changes this as it puts the Straight sub-environment at the end. Each individual
receives a bonus fitness corresponding to a value that is designed to be at least
greater than the maximum observed fitness a robot can get in an individual
sub-environment (this parameter is based in the observed fitness of several runs
of the evolution process) so the total fitness is:

F =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1000/f1 if goal not reached in env 1
1000/f2 + 100 if goal reached in env 1
1000/f3 + 200 if goal reached in env 1 and env 2
1000/f4 + 300 if goal reached in env 1 and env 2 and env 3

(6)

Being fi the fitness obtained on sub-environment i using (5). In this case an
individual has reached the goal on all sub-environments if its fitness is above
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1000/T +300, in this case 325. In all cases the evolution process is given a maxi-
mum of 300 generations to find a suitable controller for all four sub-environments.

4 Results

Figure 4a shows the average of the best individual fitness per generation for
10 runs of the evolutionary process using the average fitness with no sequence.
Figure 4b shows the fitness for each sub-environment in one run in the case of
using the average fitness. It should be noted that using the average fitness can
be deceiving in that a solution can perform really well in some sub-environments
while performing poorly in the others. Using the average fitness doesn’t ensure
that a controller is good in all sub-environments at the same time, however in
this case all runs generate controllers that are successful in all sub-environments.
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Fig. 4. Average and standard deviation of the best individual fitness per generation
(a) for 10 runs evaluating all four sub-environments at the same time with the average
fitness. Also, fitness in each sub-environment for 1 run (b). A fitness under 40 (bottom
line) means an individual is successful in a sub-environment.

Figure 5 shows the best individual fitness per generation and the average of
the best individual fitness per generation for 11 evolution runs using the worst
fitness with no sequence. It can be seen that by using the worst fitness the
evolutionary process cannot find a solution in 2 of the 11 runs for the allowed
number of generations.

In Fig. 6 the average best fitness per generation for all the sequences used
in the sequence learning scenario is shown. It can be seen that in all the cases
where a sequence is introduced the evolutionary process is able to find a solution
for all four sub-environments every time. An analysis of variance to compare the
number of generations it takes for all strategies to generate a controller that is
successful in all environments showed a significant difference, F(5,53) = 3.73,
p = 0.0057. The means and standard deviations are presented in Table 4. Post-
hoc comparisons using a Tukey HSD test showed that sequences S1 and S2 are
significantly faster than S4 in generating controllers.
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Fig. 5. Best individual fitness per generation (a) and average of best individual fitness
per generation with standard deviation (b) for 11 runs of evolution evaluating all four
sub-environments at the same time with the worst fitness. A fitness under 40 (bottom
line) means an individual is successful in all sub-environments.
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(a) Straight-TurnLeft-Bump-TurnRight(S1)
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(b) Straight-Bump-TurnLeft-TurnRight(S2)
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(c) Straight-TurnRight-TurnLeft-Bump(S3)
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(d) Bump-TurnRight-TurnLeft-Straight(S4)

Fig. 6. Average best individual fitness per generation, with standard deviation, for
10 runs of evolution evaluating sub-environments in sequence. (Black lines) indicate
environment transitions when a controller has successfully reached the goal in each one
(Colour figure online).
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Table 4. Average number of generations with standard deviation to find a controller
that solves all sub-environments for all runs for all strategies.

Worst Average S1 S2 S3 S4

Average 111.1 108.4 99.8 94.7 103.9 175.8

SD 52.26 51.89 22.35 48.71 52.02 59.65

When presented with the two environments from Fig. 2 the sequence S1 pro-
duces controllers that are able to traverse both corridors under 300 seconds in
18 out of 20 runs. Controllers obtained using the Average fitness are able to
traverse both corridors in 14 of 20 runs and using the worst fitness in 17 of
20 runs. In contrast the sequence S4 produces controllers successful in 11 of 20
runs. Unsuccessful controllers in the larger environments can be attributed to
the controllers exploiting features of the simulation to get a good fitness [20].

5 Discussion

Results show that controllers evolved by using environment decomposition were
able to generalize for the larger environments even when no assumptions were
made on how the robot could go from one sub-environment to another.

It can be seen that, when presenting the evolutionary algorithm with all sub-
environments at the same time, although the average fitness can be a deceiving
measure in this case it performs better than the worst fitness measure in evolving
controllers for all sub-environments in all runs. This may be due to the worst
measure giving bad fitness to controllers that perform well in almost all sub-
environments but perform poorly in one. This condition is relaxed with the
average fitness measure by which this kind of controllers get a better fitness.

When the sub-environments are presented in sequence it is shown that the
evolutionary algorithm finds solutions for all runs, again in contrast with the
worst measure case. Also, introducing a sequence ensures that a controller is good
in all environments as opposed to using the average measure. The S1 sequence
(Fig. 6a) performs specially well as is not only able to find solutions quickly for
all four sub-environments but also in a consistent way when compared to the
other strategies.

The significant difference between sequences S1,S2 and S4 indicates that
the order of the sub-environments influences the result. Changing the place of
the Straight sub-environment in the sequence (S4) makes the overall process
take on average more generations to find a solution that satisfies all four sub-
environments (Table 4). This indicates the idea that some environments are more
or less complex to learn after learning others.

6 Conclusions and Future Work

It can be concluded that environment decomposition is an useful approach for
evolving controllers for structured environments as controllers evolved in the
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decomposed sub-environments generalize their behavior to more complex envi-
ronments composed of the simpler ones. Introducing a sequence when presenting
an evolutionary algorithm with the different sub-environments helps generate
controllers more reliably and the specific sequence has an impact in the per-
formance of the process. Future work includes investigating how the approach
scales to structured, but more complex environments, using sensors for imple-
menting a decision mechanism in the controller and considering the problem of
how a robot can go from one sub-environment to another. We also aim to verify
our results on the physical system once it is completed.
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