13,793 research outputs found
Creature forcing and large continuum: The joy of halving
For let be the minimal number of
uniform -splitting trees needed to cover the uniform -splitting tree,
i.e., for every branch of the -tree, one of the -trees contains
. Let be the dual notion: For every branch , one of
the -trees guesses infinitely often. We show that it is consistent
that
for continuum many pairwise different cardinals and suitable
pairs . For the proof we introduce a new mixed-limit
creature forcing construction
Even more simple cardinal invariants
Using GCH, we force the following: There are continuum many simple cardinal
characteristics with pairwise different values.Comment: a few changes (minor corrections) from first versio
The Overlap Representation of Skewed Quark and Gluon Distributions
Within the framework of light-cone quantisation we derive the complete and
exact overlap representation of skewed parton distributions for unpolarised and
polarised quarks and gluons. Symmetry properties and phenomenological
applications are discussed.Comment: LaTex, 36 pages. v2: incorrect paper attached originally. v3: erratum
adde
Patterned Irradiation of YBa_2Cu_3O_(7-x) Thin Films
We present a new experiment on YBa_2Cu_3O_{7-x} (YBCO) thin films using
spatially resolved heavy ion irradiation. Structures consisting of a periodic
array of strong and weak pinning channels were created with the help of metal
masks. The channels formed an angle of +/-45 Deg with respect to the symmetry
axis of the photolithographically patterned structures. Investigations of the
anisotropic transport properties of these structures were performed. We found
striking resemblance to guided vortex motion as it was observed in YBCO single
crystals containing an array of unidirected twin boundaries. The use of two
additional test bridges allowed to determine in parallel the resistivities of
the irradiated and unirradiated parts as well as the respective current-voltage
characteristics. These measurements provided the input parameters for a
numerical simulation of the potential distribution of the Hall patterning. In
contrast to the unidirected twin boundaries in our experiment both strong and
weak pinning regions are spatially extended. The interfaces between
unirradiated and irradiated regions therefore form a Bose-glass contact. The
experimentally observed magnetic field dependence of the transverse voltage
vanishes faster than expected from the numerical simulation and we interpret
this as a hydrodynamical interaction between a Bose-glass phase and a vortex
liquid.Comment: 7 pages, 8 Eps figures included. Submitted to PR
The size of the nucleosome
The structural origin of the size of the 11 nm nucleosomal disc is addressed.
On the nanometer length-scale the organization of DNA as chromatin in the
chromosomes involves a coiling of DNA around the histone core of the
nucleosome. We suggest that the size of the nucleosome core particle is
dictated by the fulfillment of two criteria: One is optimizing the volume
fraction of the DNA double helix; this requirement for close-packing has its
root in optimizing atomic and molecular interactions. The other criterion being
that of having a zero strain-twist coupling; being a zero-twist structure is a
necessity when allowing for transient tensile stresses during the
reorganization of DNA, e.g., during the reposition, or sliding, of a nucleosome
along the DNA double helix. The mathematical model we apply is based on a
tubular description of double helices assuming hard walls. When the base-pairs
of the linker-DNA is included the estimate of the size of an ideal nucleosome
is in close agreement with the experimental numbers. Interestingly, the size of
the nucleosome is shown to be a consequence of intrinsic properties of the DNA
double helix.Comment: 11 pages, 5 figures; v2: minor modification
Design of a Fast Digital Double Relaxation Oscillation SQUID
A fast digital Double Relaxation Oscillation SQUID (DROS) with a relaxation oscillation frequency of 100 MHz has been developed. The digital DROS incorporates a DROS and a superconducting up-down counter that supplies the feedback flux. The major advantage of a DROS is that the relaxation oscillations generate an on-chip clock signal and therefore, no external clock is required. In order to maximize the slew rate without compromising the sensitivity, the quantization unit of the feedback flux was adapted to the flux noise of the DROS. This resulted in a designed flux slew rate of 5·106 ¿0/s. We will discuss the design optimization, numerical simulations, the layout and some experimental results of the digital DRO
Current dependence of grain boundary magnetoresistance in La_0.67Ca_0.33MnO_3 films
We prepared epitaxial ferromagnetic manganite films on bicrystal substrates
by pulsed laser ablation. Their low- and high-field magnetoresistance (MR) was
measured as a function of magnetic field, temperature and current. At low
temperatures hysteretic changes in resistivity up to 70% due to switching of
magnetic domains at the coercitive field are observed. The strongly non-ohmic
behavior of the current-voltage leads to a complete suppression of the MR
effect at high bias currents with the identical current dependence at low and
high magnetic fields. We discuss the data in view of tunneling and mesoscale
magnetic transport models and propose an explicit dependence of the spin
polarization on the applied current in the grain boundary region.Comment: 5 pages, to appear in J. Appl. Phy
Inferring decoding strategy from choice probabilities in the presence of noise correlations
The activity of cortical neurons in sensory areas covaries with perceptual decisions, a relationship often quantified by choice probabilities. While choice probabilities have been measured extensively, their interpretation has remained fraught with difficulty. Here, we derive the mathematical relationship between choice probabilities, read-out weights and noise correlations within the standard neural decision making model. Our solution allows us to prove and generalize earlier observations based on numerical simulations, and to derive novel predictions. Importantly, we show how the read-out weight profile, or decoding strategy, can be inferred from experimentally measurable quantities. Furthermore, we present a test to decide whether the decoding weights of individual neurons are optimal, even without knowing the underlying noise correlations. We confirm the practical feasibility of our approach using simulated data from a realistic population model. Our work thus provides the theoretical foundation for a growing body of experimental results on choice probabilities and correlations
- âŠ