11 research outputs found

    Comprehensive Map of Molecules Implicated in Obesity.

    No full text
    Obesity is a global epidemic affecting over 1.5 billion people and is one of the risk factors for several diseases such as type 2 diabetes mellitus and hypertension. We have constructed a comprehensive map of the molecules reported to be implicated in obesity. A deep curation strategy was complemented by a novel semi-automated text mining system in order to screen 1,000 full-length research articles and over 90,000 abstracts that are relevant to obesity. We obtain a scale free network of 804 nodes and 971 edges, composed of 510 proteins, 115 genes, 62 complexes, 23 RNA molecules, 83 simple molecules, 3 phenotype and 3 drugs in "bow-tie" architecture. We classify this network into 5 modules and identify new links between the recently discovered fat mass and obesity associated FTO gene with well studied examples such as insulin and leptin. We further built an automated docking pipeline to dock orlistat as well as other drugs against the 24,000 proteins in the human structural proteome to explain the therapeutics and side effects at a network level. Based upon our experiments, we propose that therapeutic effect comes through the binding of one drug with several molecules in target network, and the binding propensity is both statistically significant and different in comparison with any other part of human structural proteome

    Topological analysis of the comprehensive map using Network analyzer and Gephi.

    No full text
    <p>Topological analysis of the comprehensive map using Network analyzer and Gephi.</p

    Not Available

    No full text
    Not AvailableAgricultural productivity is highly influenced by its associated microbial community. With advancements in omics technology, metagenomics is known to play a vital role in microbial world studies by unlocking the uncultured microbial populations present in the environment. Metagenomics is a diagnostic tool to target unique signature loci of plant and animal pathogens as well as beneficial microorganisms from samples. Here, we reviewed various aspects of metagenomics from experimental methods to techniques used for sequencing, as well as diversified computational resources, including databases and software tools. Exhaustive focus and study are conducted on the application of metagenomics in agriculture, deciphering various areas, including pathogen and plant disease identification, disease resistance breeding, plant pest control, weed management, abiotic stress management, post-harvest management, discoveries in agriculture, source of novel molecules/compounds, biosurfactants and natural product, identification of biosynthetic molecules, use in genetically modified crops, and antibiotic-resistant genes. Metagenomics-wide association studies study in agriculture on crop productivity rates, intercropping analysis, and agronomic field is analyzed. This article is the first of its comprehensive study and prospects from an agriculture perspective, focusing on a wider range of applications of metagenomics and its association studies.Not Availabl

    A comprehensive map of obesity in human.

    No full text
    <p>(Also see URL:<a href="http://tinyurl.com/dykn8fd" target="_blank">http://tinyurl.com/dykn8fd</a>).</p

    Shows the (A) schematic diagram of Docoviz pipeline and its (B) applications.

    No full text
    <p>Shows the (A) schematic diagram of Docoviz pipeline and its (B) applications.</p

    Shows types of interaction, example of verbs, representative sentences and references.

    No full text
    <p>Shows types of interaction, example of verbs, representative sentences and references.</p

    Not Available

    No full text
    Not AvailablePukzing cave, the largest cave of Mizoram, India was explored for bacterial diversity. Culture dependent method revealed 235 bacterial isolates using three different treatments. Identity of the microbial species was confirmed by 16S rDNA sequencing. The highest bacterial population was recovered from heat treatment (n = 97;41.2%) followed by normal (n = 79;33.6%) and cold treatment (n = 59;25.1%) indicating dominance of moderate thermophiles. Antimicrobial potential of isolates showed 20.4% isolates having antimicrobial ability against tested pathogens. Amplicon sequencing of PKSI, PKSII and NRP specific genes revealed presence of AMP genes in the microbial population. Six microbial pathogens were selected for screening as they are well known for different disease cause organism in various fields such as agriculture and human health. Cave environment harbors unique microbial flora and hypervariable region V4 is more informative. Higher activity of AMP assay against these microbes indicates that cave microbial communities could be potential source of future genomic resources.Not Availabl
    corecore