566 research outputs found

    Non-invasive electrophysiological assessment of the corticospinal tract in health and disease

    Get PDF
    PhD ThesisTo date, no candidate markers of upper motor neuron (UMN) function have performed sufficiently well to enter widespread clinical use, and the lack of such markers impedes both the diagnostic process and clinical trials in motor neuron disease (MND). We studied 15-30Hz intermuscular coherence (IMC), a novel marker of UMN function, and central motor conduction time (CMCT), an established marker of UMN function based on transcranial magnetic stimulation (TMS), in healthy volunteers and patients newly diagnosed with MND. To clarify the relative contributions of different parts of the motor system to IMC generation, we examined IMC in patients with longstanding diagnoses of hereditary spastic paraparesis (HSP), multifocal motor neuropathy (MMN) and inclusion body myositis (IBM). Previous studies reported conflicting results for the relationship between CMCT and predictors such as age and height. We only found a significant correlation between lower limb CMCT and height. IMC did not vary significantly with age, allowing data from healthy subjects across all ages to be pooled into a single normative dataset. The variability of IMC between subjects was considerable, and within a given subject variability was greater between than within recording sessions; potential contributors are discussed. Anodal transcranial direct current stimulation (tDCS) caused a significant increase in IMC, but interindividual variability was substantial, which might hinder its future use as an adjunct to IMC. To compare individual disease groups to the normal cohort, we evaluated the area under the receiver-operating characteristic curve (AUC). IMC generally matched or exceeded the performance of CMCT in discriminating patients with MND from normal, achieving AUCs of 0.83 in the upper and 0.79 in the lower limb. Previous evidence suggests that IMC abnormalities are primarily attributable to corticospinal tract (CST) dysfunction. In line with this, most patients with HSP exhibited diminished IMC. However, patients with MMN also showed decreased IMC, suggesting either that subclinical CST involvement was present or that dysfunction of lower motor neurons (LMNs) may affect IMC; clarification through computational modelling is suggested. In iii IBM, IMC was generally increased, which might reflect that the altered motor unit discharge pattern makes synchronisation more readily detectable. IMC appears to be a promising marker of CST function. It remains to be clarified how strongly it is influenced by LMN lesions, and optimisation of methods should help to minimise the variability of results. Since IMC is non-invasive and can be measured using commonly available EMG equipment, wider dissemination should prove straightforward.Wellcome Trus

    Untersuchungen zur Karzinogenese im Oropharynx unter Berücksichtigung exogener und endogener Risikofaktoren

    Get PDF

    Analysis of atmospheric circulation from climate model big data -Current approaches and future challenges

    Get PDF
    A large part of low-frequency variability in the climate system on sub-seasonal to decadal timescales can be described in terms of preferred atmospheric circulation patterns, often called circulation regimes. Such recurring and persistent, large-scale patterns of pressure and circulation anomalies span vast geographical area and are closely related to atmospheric teleconnection patterns like the famous North-Atlantic Oscillation (NAO). Within the conceptual framework of circulation regimes, low-frequency variability can be observed as a result of transitions between the distinct atmospheric circulation regimes. Moreover, the frequency of occurrence of preferred atmospheric circulation regimes is influenced by the external forcing factors such as other components of the climate system and anthropogenic forcing. This determines, at least partly, the time-mean response of the atmospheric flow to the external forcing. In this framework, one of our research foci is to advance the understanding of past, recent and future changes in the spatial/temporal structure of atmospheric circulation regimes and to assess the impact of internal climate dynamics versus external forcing. To tackle these questions, we exploit large global gridded data sets either from different reanalysis data sets or from model simulations with state of the art climate models mostly performed in the framework of CMIP (Coupled model intercomparison project) initiatives. We introduce and apply a hypothesis-driven approach, in particular to study the impact of sea-ice changes on atmospheric circulation patterns. The hypothesis-driven approach consists in three (iterative) steps: (i) Application of statistical methods for pattern recognition on reanalysis and climate model data, (ii) development of a hypothesis about underlying dynamical mechanisms of the impact of sea-ice changes on atmospheric circulation patterns, (iii) testing of the new hypothesis by performing new well designed climate model experiments and new model data analysis. By applying this approach, we identified tropospheric and stratospheric dynamical pathways which explain, how Arctic climate changes, in particular sea-ice changes, influence the weather and climate in mid-latitudes

    Data from the MOSAiC Arctic Ocean drift experiment

    Get PDF
    The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) is a multinational interdisciplinary endeavor of a large earth system sciences community

    The linkage between Arctic sea ice changes and mid-latitude atmospheric circulation in reanalysis data and model simulations— The role of barotropic-baroclinic interactions

    Get PDF
    bserved global warming trends have their maximum in Arctic regions, a phenomenon referred to as Arctic Amplification. Consequently, Arctic sea ice shows a strong decreasing trend. These changes imprint modifications on atmospheric flow patterns not only in Arctic regions themselves. Changes of teleconnections and planetary scale motions like Rossby wave trains affect mid-latitude climate as well. In extension to the studies by Jaiser et al. (abstract submitted) here we study the impact of sea-ice changes on changes in atmospheric synoptic and planetary waves. Therefore, we analyse the atmospheric kinetic energy spectra for ERA-Interim reanalysis and the properly designed Atmospheric General Circulation Model (AGCM) experiments with prescribed sea-ice changes (cf. abstract by Jaiser et al.). Special emphasis has been put on the the role of barotropic-baroclinic interactions and corresponding changes in the tropospheric planetary wave trains by examining the nonlinear kinetic energy and enstrophy interaction and subsequent redistribution of kinetic energy and enstrophy

    Atmospheric winter response to Arctic sea ice changes in reanalysis data and model simulations - The role of troposphere-stratosphere coupling

    Get PDF
    In recent years, Arctic regions showcased the most pronounced signals of a changing climate: Sea ice is reduced by more the ten percent per decade. At the same time, global warming trends have their maximum in Arctic latitudes often labled Arctic Amplification. There is strong evidence that amplified Arctic changes feed back into mid-latitudes in winter. We identified mechanisms that link recent Arctic changes through vertically propagating planetary waves to events of a weakened stratospheric polar vortex. Related anomalies propagate downward and lead to negative AO-like situations in the troposphere. European winter climate is sensitive to negative AO situations in terms of cold air outbreaks that are likely to occur more often in that case. These results based on ERAInterim reanalysis data do not allow to dismiss other potential forcing factors leading to observed mid-latitude climate changes. Nevertheless, properly designed Atmospheric General Circulation Model (AGCM) experiments with AFES and ECHAM6 are able to reproduce observed atmospheric circulation changes if only observed sea ice changes in the Arctic are prescribed. This allows to deduce mechanisms that explain how Arctic Amplification can lead to a negative AO response via a stratospheric pathway. Further investigation of these mechanisms may feed into improved prediction systems

    The linkage between Arctic sea ice changes and mid-latitude atmospheric circulation in reanalysis data and model simulations - The role of tropo-stratospheric coupling

    Get PDF
    Observed global warming trends have their maximum in Arctic regions, a phenomenon referred to as Arctic Amplification. Consequently, Arctic sea ice shows a strong decreasing trend. These changes imprint modifications on atmospheric flow patterns not only in Arctic regions themselves. Changes of teleconnections and planetary scale motions like Rossby waves affect mid-latitude climate as well. We identified mechanisms that link recent Arctic changes through vertically propagating planetary waves to weakening events of the stratospheric polar vortex. Related anomalies then propagate downward and lead to negative AO-like situations in the troposphere. These results based on ERA-Interim reanalysis data do not allow to entirely dismiss other potential forcing factors leading to observed mid-latitude climate changes. More importantly, properly designed Atmospheric General Circulation Model (AGCM) experiments with AFES and ECHAM6 are able to reproduce observed atmospheric circulation changes if only observed sea ice changes in the Arctic are prescribed. This includes the potential mechanism explaining how Arctic Amplification can lead to a negative AO response via a stratospheric pathway. A further examination of barotropic-baroclinic interactions based on nonlinear kinetic energy and enstrophy interaction will be given by Handorf et al. (abstract submitted)

    Resistance against barley leaf rust (Puccinia hordei) in West-European spring barley germplasm

    Get PDF
    The level and type of resistance against leaf rust (Puccinia hordei) was determined in modern spring barley germplasm. In field trials all over Europe most accessions were in some locations and years significantly less infected than the moderately resistant reference ‘Grit’. Differentiating P. hordei isolates indicated that most accessions carried hypersensitivity (Rph) genes. A virulence survey indicated that among the known resistance genes, only Rph7 is still fully effective in Europe. Some accessions carried undetermined hypersensitivity resistance gene(s) that were effective to all isolates tested. The level of non-hypersensitivity or partial resistance was assessed from the latency period of the fungus and the percentage of early aborted infection units not associated with plant cell necrosis. These parameters indicated that several accessions had a level of partial resistance higher than that of the highly partially resistant ‘Vada’. We concluded that barley breeders have achieved very high levels of partial resistance against P. hordei in spring barley germplasm

    The impact of Arctic warming on the midlatitude jetstream: Can it? Has it? Will it?

    Get PDF
    Copyright © 2015 John Wiley & Sons, LtdThe Arctic lower atmosphere has warmed more rapidly than that of the globe as a whole, and this has been accompanied by unprecedented sea ice melt. Such large environmental changes are already having profound impacts on the flora, fauna, and inhabitants of the Arctic region. An open question, however, is whether these Arctic changes have an effect on the jet-stream and thereby influence weather patterns farther south. This broad question has recently received a lot of scientific and media attention, but conclusions appear contradictory rather than consensual. We argue that one point of confusion has arisen due to ambiguities in the exact question being posed. In this study, we frame our inquiries around three distinct questions: Can Arctic warming influence the midlatitude jet-stream? Has Arctic warming significantly influenced the midlatitude jet-stream? Will Arctic warming significantly influence the midlatitude jet-stream? We argue that framing the discussion around the three questions: Can it?, Has it?, and Will it? provides insight into the common themes emerging in the literature as well as highlights the challenges ahead
    • …
    corecore