4 research outputs found

    What is process window?

    No full text

    Graphene-enabled and directed nanomaterial placement from solution for large-scale device integration

    Get PDF
    Directed placement of solution-based nanomaterials at predefined locations with nanoscale precision limits bottom-up integration in semiconductor process technology. We report a method for electric-field-assisted placement of nanomaterials from solution by means of large-scale graphene layers featuring nanoscale deposition sites. The structured graphene layers are prepared via either transfer or synthesis on standard substrates, and then are removed once nanomaterial deposition is completed, yielding material assemblies with nanoscale resolution that cover surface areas >1 mm2. In order to demonstrate the broad applicability, we have assembled representative zero-dimensional, one-dimensional, and two-dimensional semiconductors at predefined substrate locations and integrated them into nanoelectronic devices. Ultimately, this method opens a route to bottom-up integration of nanomaterials for industry-scale applications

    Full scale, microscopically resolved tomographies of sandstone and carbonate rocks augmented by experimental porosity and permeability values

    No full text
    Abstract We report a dataset containing full-scale, 3D images of rock plugs augmented by petrophysical lab characterization data for application in digital rock and capillary network analysis. Specifically, we have acquired microscopically resolved tomography datasets of 18 cylindrical sandstone and carbonate rock samples having lengths of 25.4 mm and diameters of 9.5 mm. Based on the micro-tomography data, we have computed porosity-values for each imaged rock sample. For validating the computed porosity values with a complementary lab method, we have measured porosity for each rock sample by using standard petrophysical characterization techniques. Overall, the tomography-based porosity values agree with the measurement results obtained from the lab, with values ranging from 8% to 30%. In addition, we provide for each rock sample the experimental permeabilities, with values ranging from 0.4 mD to above 5D. This dataset will be essential for establishing, benchmarking, and referencing the relation between porosity and permeability of reservoir rock at pore scale
    corecore