5,070 research outputs found

    Breeding Plantation Tree Crops: Tropical Species

    Get PDF

    Relating harmonic and projective descriptions of N=2 nonlinear sigma models

    Full text link
    Recent papers have established the relationship between projective superspace and a complexified version of harmonic superspace. We extend this construction to the case of general nonlinear sigma models in both frameworks. Using an analogy with Hamiltonian mechanics, we demonstrate how the Hamiltonian structure of the harmonic action and the symplectic structure of the projective action naturally arise from a single unifying action on a complexified version of harmonic superspace. This links the harmonic and projective descriptions of hyperkahler target spaces. For the two examples of Taub-NUT and Eguchi-Hanson, we show how to derive the projective superspace solutions from the harmonic superspace solutions.Comment: 25 pages; v3: typo fixed in eq (1.36

    Probing Density Fluctuations using the FIRST Radio Survey

    Full text link
    We use results of angular clustering measurements in 3000 sq. deg's of the FIRST radio survey to infer information on spatial clustering. Measurements are compared with CDM-model predictions. Clustering of FIRST sources with optical ID's in the APM catalog are also investigated. Finally, we outline a preliminary search for a weak lensing signal in the survey.Comment: 6 pages latex, 2 figures, to appear in Cosmology with the New Radio Surveys (Kluwer

    N = 2 supersymmetric sigma-models and duality

    Full text link
    For two families of four-dimensional off-shell N = 2 supersymmetric nonlinear sigma-models constructed originally in projective superspace, we develop their formulation in terms of N = 1 chiral superfields. Specifically, these theories are: (i) sigma-models on cotangent bundles T*M of arbitrary real analytic Kaehler manifolds M; (ii) general superconformal sigma-models described by weight-one polar supermultiplets. Using superspace techniques, we obtain a universal expression for the holomorphic symplectic two-form \omega^{(2,0)} which determines the second supersymmetry transformation and is associated with the two complex structures of the hyperkaehler space T*M that are complimentary to the one induced from M. This two-form is shown to coincide with the canonical holomorphic symplectic structure. In the case (ii), we demonstrate that \omega^{(2,0)} and the homothetic conformal Killing vector determine the explicit form of the superconformal transformations. At the heart of our construction is the duality (generalized Legendre transform) between off-shell N = 2 supersymmetric nonlinear sigma-models and their on-shell N = 1 chiral realizations. We finally present the most general N = 2 superconformal nonlinear sigma-model formulated in terms of N = 1 chiral superfields. The approach developed can naturally be generalized in order to describe 5D and 6D superconformal nonlinear sigma-models in 4D N = 1 superspace.Comment: 31 pages, no figures; V2: reference and comments added, typos corrected; V3: more typos corrected, published versio

    Composite Fermion Metals from Dyon Black Holes and S-Duality

    Full text link
    We propose that string theory in the background of dyon black holes in four-dimensional anti-de Sitter spacetime is holographic dual to conformally invariant composite Dirac fermion metal. By utilizing S-duality map, we show that thermodynamic and transport properties of the black hole match with those of composite fermion metal, exhibiting Fermi liquid-like. Built upon Dirac-Schwinger-Zwanziger quantization condition, we argue that turning on magnetic charges to electric black hole along the orbit of Gamma(2) subgroup of SL(2,Z) is equivalent to attaching even unit of statistical flux quanta to constituent fermions. Being at metallic point, the statistical magnetic flux is interlocked to the background magnetic field. We find supporting evidences for proposed holographic duality from study of internal energy of black hole and probe bulk fermion motion in black hole background. They show good agreement with ground-state energy of composite fermion metal in Thomas-Fermi approximation and cyclotron motion of a constituent or composite fermion excitation near Fermi-point.Comment: 30 pages, v2. 1 figure added, minor typos corrected; v3. revised version to be published in JHE

    A genome-wide study of Hardy–Weinberg equilibrium with next generation sequence data

    Get PDF
    Statistical tests for Hardy–Weinberg equilibrium have been an important tool for detecting genotyping errors in the past, and remain important in the quality control of next generation sequence data. In this paper, we analyze complete chromosomes of the 1000 genomes project by using exact test procedures for autosomal and X-chromosomal variants. We find that the rate of disequilibrium largely exceeds what might be expected by chance alone for all chromosomes. Observed disequilibrium is, in about 60% of the cases, due to heterozygote excess. We suggest that most excess disequilibrium can be explained by sequencing problems, and hypothesize mechanisms that can explain exceptional heterozygosities. We report higher rates of disequilibrium for the MHC region on chromosome 6, regions flanking centromeres and p-arms of acrocentric chromosomes. We also detected long-range haplotypes and areas with incidental high disequilibrium. We report disequilibrium to be related to read depth, with variants having extreme read depths being more likely to be out of equilibrium. Disequilibrium rates were found to be 11 times higher in segmental duplications and simple tandem repeat regions. The variants with significant disequilibrium are seen to be concentrated in these areas. For next generation sequence data, Hardy–Weinberg disequilibrium seems to be a major indicator for copy number variation.Peer ReviewedPostprint (published version

    Near-Infrared Super Resolution Imaging with Metallic Nanoshell Particle Chain Array

    Full text link
    We propose a near-infrared super resolution imaging system without a lens or a mirror but with an array of metallic nanoshell particle chain. The imaging array can plasmonically transfer the near-field components of dipole sources in the incoherent and coherent manners and the super resolution images can be reconstructed in the output plane. By tunning the parameters of the metallic nanoshell particle, the plasmon resonance band of the isolate nanoshell particle red-shifts to the near-infrared region. The near-infrared super resolution images are obtained subsequently. We calculate the field intensity distribution at the different planes of imaging process using the finite element method and find that the array has super resolution imaging capability at near-infrared wavelengths. We also show that the image formation highly depends on the coherence of the dipole sources and the image-array distance.Comment: 15 pages, 6 figure

    Does a 'direct' transfer protocol reduce time to coronary angiography for patients with non-ST-elevation acute coronary syndromes? A prospective observational study.

    Get PDF
    OBJECTIVE: National guidelines recommend 'early' coronary angiography within 96 h of presentation for patients with non-ST elevation acute coronary syndromes (NSTE-ACS). Most patients with NSTE-ACS present to their district general hospital (DGH), and await transfer to the regional cardiac centre for angiography. This care model has inherent time delays, and delivery of timely angiography is problematic. The objective of this study was to assess a novel clinical care pathway for the management of NSTE-ACS, known locally as the Heart Attack Centre-Extension or HAC-X, designed to rapidly identify patients with NSTE-ACS while in DGH emergency departments (ED) and facilitate transfer to the regional interventional centre for 'early' coronary angiography. METHODS: This was an observational study of 702 patients divided into two groups; 391 patients treated before the instigation of the HAC-X pathway (Pre-HAC-X), and 311 patients treated via the novel pathway (Post-HAC-X). Our primary study end point was time from ED admission to coronary angiography. We also assessed the length of hospital stay. RESULTS: Median time from ED admission to coronary angiography was 7.2 (IQR 5.1-10.2) days pre-HAC-X compared to 1.0 (IQR 0.7-2.0) day post-HAC-X (p<0.001). Median length of hospital stay was 3.0 (IQR 2.0-6.0) days post-HAC-X v 9.0 (IQR 6.0-14.0) days pre-HAC-X (p<0.0005). This equates to a reduction of six hospital bed days per NSTE-ACS admission. CONCLUSIONS: The introduction of this novel care pathway was associated with significant reductions in time to angiography and in total hospital bed occupancy for patients with NSTE-ACS
    • 

    corecore