2,741 research outputs found

    Large Scale Alignment of Optical Polarizations from Distant QSOs using Coordinate Invariant Statistics

    Full text link
    We introduce several coordinate invariant statistical procedures in order to test for local alignment of polarizations. A large scale alignment of optical polarizations from distant QSOs has recently been observed by \huts and collaborators. The new statistical procedures are based on comparing polarizations at different angular coordinates by making a parallel transport. The results of these statistical procedures continue to support the existence of the large scale alignment effect in the QSO optical polarization data. The alignment is found to be much more pronounced in the data sample with low degrees of polarization p2p\le 2%. This suggests that the alignment may be attributed to some propagation effect. The distance scale over which the alignment effect is dominant is found to be of order 1 Gpc. We also find that a very large scale alignment is present in the large redshift, z1z\ge 1, data sample. Infact the data sample with z1z\ge 1 appears to be aligned over the entire celestial sphere. We discuss possible physical effects, such as extinction and pseudoscalar-photon mixing, which may be responsible for the observations.Comment: 23 pages, 8 figure

    Transference of Transport Anisotropy to Composite Fermions

    Full text link
    When interacting two-dimensional electrons are placed in a large perpendicular magnetic field, to minimize their energy, they capture an even number of flux quanta and create new particles called composite fermions (CFs). These complex electron-flux-bound states offer an elegant explanation for the fractional quantum Hall effect. Furthermore, thanks to the flux attachment, the effective field vanishes at a half-filled Landau level and CFs exhibit Fermi-liquid-like properties, similar to their zero-field electron counterparts. However, being solely influenced by interactions, CFs should possess no memory whatever of the electron parameters. Here we address a fundamental question: Does an anisotropy of the electron effective mass and Fermi surface (FS) survive composite fermionization? We measure the resistance of CFs in AlAs quantum wells where electrons occupy an elliptical FS with large eccentricity and anisotropic effective mass. Similar to their electron counterparts, CFs also exhibit anisotropic transport, suggesting an anisotropy of CF effective mass and FS.Comment: 5 pages, 5 figure

    Numerical Modeling of Fluid Flow in Solid Tumors

    Get PDF
    A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry. The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume. Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor, i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size, the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid pressure, is low in these ranges

    On the Futility of Screening for Genes That Make You Fat

    Get PDF
    J. Lennert Veerman discusses the implications for genetic screening of findings showing that physical activity substantially attenuates the effects of genetic variants which predispose towards obesity

    Cancer and systemic inflammation: treat the tumour and treat the host

    Get PDF
    Determinants of cancer progression and survival are multifactorial and host responses are increasingly appreciated to have a major role. Indeed, the development and maintenance of a systemic inflammatory response has been consistently observed to confer poorer outcome, in both early and advanced stage disease. For patients, cancer-associated symptoms are of particular importance resulting in a marked impact on day-to-day quality of life and are also associated with poorer outcome. These symptoms are now recognised to cluster with one another with anorexia, weight loss and physical function forming a recognised cluster whereas fatigue, pain and depression forming another. Importantly, it has become apparent that these symptom clusters are associated with presence of a systemic inflammatory response in the patient with cancer. Given the understanding of the above, there is now a need to intervene to moderate systemic inflammatory responses, where present. In this context the rationale for therapeutic intervention using nonselective anti-inflammatory agents is clear and compelling and likely to become a part of routine clinical practice in the near future. The published literature on therapeutic intervention using anti-inflammatory agents for cancer-associated symptoms was reviewed. There are important parallels with the development of useful treatments for the systemic inflammatory response in patients with rheumatological disease and cardiovascular disease

    SMART: Unique splitting-while-merging framework for gene clustering

    Get PDF
    Copyright @ 2014 Fa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Successful clustering algorithms are highly dependent on parameter settings. The clustering performance degrades significantly unless parameters are properly set, and yet, it is difficult to set these parameters a priori. To address this issue, in this paper, we propose a unique splitting-while-merging clustering framework, named “splitting merging awareness tactics” (SMART), which does not require any a priori knowledge of either the number of clusters or even the possible range of this number. Unlike existing self-splitting algorithms, which over-cluster the dataset to a large number of clusters and then merge some similar clusters, our framework has the ability to split and merge clusters automatically during the process and produces the the most reliable clustering results, by intrinsically integrating many clustering techniques and tasks. The SMART framework is implemented with two distinct clustering paradigms in two algorithms: competitive learning and finite mixture model. Nevertheless, within the proposed SMART framework, many other algorithms can be derived for different clustering paradigms. The minimum message length algorithm is integrated into the framework as the clustering selection criterion. The usefulness of the SMART framework and its algorithms is tested in demonstration datasets and simulated gene expression datasets. Moreover, two real microarray gene expression datasets are studied using this approach. Based on the performance of many metrics, all numerical results show that SMART is superior to compared existing self-splitting algorithms and traditional algorithms. Three main properties of the proposed SMART framework are summarized as: (1) needing no parameters dependent on the respective dataset or a priori knowledge about the datasets, (2) extendible to many different applications, (3) offering superior performance compared with counterpart algorithms.National Institute for Health Researc

    Recent developments and advancements in solar air heaters: A detailed review

    Get PDF
    This is the final version. Available from MDPI via the DOI in this record. Data Availability Statement: Not applicable.The scientific literature extensively mentions the use of a solar air heater (SAH) by utilizing solar energy for heating purposes. The poor heat-transfer rate of an SAH with a flat plate is caused by developing a laminar sub-layer near the heated base plate. The plate temperatures improve significantly, resulting in losses and a decrease in performance. The passive approach entails the placement of fins/turbulators/pouring material/ribs to the surface where the boundary layer forms to disrupt it. Artificially roughened SAH for gathering and efficiently using solar radiations for thermal purposes is extensively described in the literature. This paper includes a thorough literature overview of the history, basics, roughness evolution, forms of SAH, and recent breakthroughs in thermal performance improvement techniques for SAH compiled by several researchers. This paper uses a comparative evaluation of several roughness geometries and kinds of SAH to uncover thermohydraulic performance factors that may be considered in future research to pick the optimal configuration
    corecore