16 research outputs found
Design and Synthesis of Novel Benzimidazoles and Aminothiazoles as Small Molecule Inhibitors of CDK5/p25
This dissertation describes the design, synthesis and biological evaluation of novel CDK5/p25 small molecule inhibitors. Cyclin dependent kinase 5 (CDK5) is a proline directed serine/threonine kinase which plays an important role in the pathology of Alzheimer\u27s disease (AD). CDK5/p25 has been implicated in hyperphosphorylation of tau protein which forms neurofibrillary tangles (NFTs), a contributing factor to the pathology of Alzheimer\u27s disease (AD). Based on the deposited X-ray crystal structure of CDK5/p25 with a non-selective CDK inhibitor R-Roscovitine (PDB ID: 1UNL), eight series of novel compounds with a benzimidazole core were designed, synthesized and tested as inhibitors of CDK5/p25. An efficient synthesis of trisubtituted benzimidazoles was developed to explore the SAR at the 1-, 4-, and 6- positions of the benzimidazole core. X-ray crystal structure verification of an intermediate confirmed selective alkylation of the N-1 position of the benzimidazole scaffold. Synthesis of N-1, N-4, C6-O, C6-N, C6-C and C-2 substituted benzimidazoles were achieved via Mitsunobu coupling, Suzuki Miyaura coupling, Buchwald coupling and reductive alkylation strategies. Aminothiazole scaffolds are an established class of CDK inhibitors including CDK5. A molecular hybridization technique was applied to the design of a series of 2-, 5- disubstituted aminothiazoles incorporating structural features of both the Meriolins, natural product CDK inhibitors, and known aminothiazole scaffolds. Synthetic techniques employed included aryl lithiation, deoxygenation and acylation
Metabolism of JQ1, an Inhibitor of Bromodomain and Extra Terminal Bromodomain Proteins, in Human and Mouse Liver Microsomesâ€
JQ1 is a small-molecule inhibitor of the bromodomain and extra terminal (BET) protein family that potently inhibits the bromodomain testis-specific protein (BRDT), which is essential for spermatogenesis. JQ1 treatment produces a reversible contraceptive effect by targeting the activity of BRDT in mouse male germ cells, validating BRDT as a male contraceptive target. Although JQ1 possesses favourable physical properties, it exhibits a short half-life. Because the details of xenobiotic metabolism play important roles in the optimization of drug candidates and in determining the role of metabolism in drug efficacy, we investigated the metabolism of JQ1 in human and mouse liver microsomes. We present the first comprehensive view of JQ1 metabolism in liver microsomes, distinguishing nine JQ1 metabolites, including three monohydroxylated, one de-tert-butylated, two dihydroxylated, one monohydroxylated/dehydrogenated, one monohydroxylated-de-tert-butylated and one dihydroxylated/dehydrogenated variant of JQ1. The dominant metabolite (M1) in both human and mouse liver microsomes is monohydroxylated on the fused three-ring core. Using recombinant cytochrome P450 (CYP) enzymes, chemical inhibitors and the liver S9 fraction of Cyp3a-null mice, we identify enzymes that contribute to the formation of these metabolites. Cytochrome P450 family 3 subfamily A member 4 (CYP3A4) is the main contributor to the production of JQ1 metabolites in vitro, and the CYP3A4/5 inhibitor ketoconazole strongly inhibits JQ1 metabolism in both human and mouse liver microsomes. Our findings suggest that JQ1 half-life and efficacy might be improved in vivo by co-administration of a selective CYP inhibitor, thereby impacting the use of JQ1 as a probe for BRDT activity in spermatogenesis and as a probe or therapeutic in other systems
High-Throughput Screening, Discovery, and Optimization to Develop a Benzofuran Class of Hepatitis C Virus Inhibitors
Using a high-throughput, cell-based HCV luciferase reporter assay to screen a diverse small-molecule compound collection (~300 000 compounds), we identified a benzofuran compound class of HCV inhibitors. The optimization of the benzofuran scaffold led to the identification of several exemplars with potent inhibition (EC50 25 µM), and excellent selectivity (selective index = CC50/EC50, > 371-fold). The structure–activity studies culminated in the design and synthesis of a 45-compound library to comprehensively explore the anti-HCV activity. The identification, design, synthesis, and biological characterization for this benzofuran series is discussed
1-Isopropyl-4-nitro-6-methoxy-1H-benzimidazole
There are two independent molecules in the asymmetric unit of the title compound, C11H13N3O3. The interplanar angles for the two rings of the benzimidazole ring system is 2.21 (12)° in one molecule and 0.72 (12)° in the other. The nitro group is twisted in the same direction relative to the least-squares plane through its attached benzene ring in both molecules, with interplanar angles of 15.22 (9) and 18.02 (8)°. In the crystal structure, molecules are stacked along the a axis through π–π interactions (centroid–centroid distance 4.1954 Å). C—H...O hydrogen bonds are also present
Identification of HIV inhibitors guided by free energy perturbation calculations
Free energy perturbation (FEP) theory coupled to molecular dynamics (MD) or Monte Carlo (MC) statistical mechanics offers a theoretically precise method for determining the free energy differences of related biological inhibitors. Traditionally requiring extensive computational resources and expertise, it is only recently that its impact is being felt in drug discovery. A review of computer-aided anti-HIV efforts employing FEP calculations is provided here that describes early and recent successes in the design of human immunodeficiency virus type 1 (HIV-1) protease and non-nucleoside reverse transcriptase inhibitors. In addition, our ongoing work developing and optimizing leads for small molecule inhibitors of cyclophilin A (CypA) is highlighted as an update on the current capabilities of the field. CypA has been shown to aid HIV-1 replication by catalyzing the cis/trans isomerization of a conserved Gly-Pro motif in the Nterminal domain of HIV-1 capsid (CA) protein. In the absence of a functional CypA, e.g., by the addition of an inhibitor such as cyclosporine A (CsA), HIV-1 has reduced infectivity. Our simulations of acylurea-based and 1-indanylketone-based CypA inhibitors have determined that their nanomolar and micromolar binding affinities, respectively, are tied to their ability to stabilize Arg55 and Asn102. A structurally novel 1-(2,6-dichlorobenzamido) indole core was proposed to maximize these interactions. FEP-guided optimization, experimental synthesis, and biological testing of lead compounds for toxicity and inhibition of wild-type HIV-1 and CA mutants have demonstrated a dose-dependent inhibition of HIV-1 infection in two cell lines. While the inhibition is modest compared to CsA, the results are encouraging
3-Substituted biquinolinium inhibitors of AraC family transcriptional activator VirF from S. flexneri obtained through in situ chemical ionization of 3,4-disubstituted dihydroquinolines
During a structure–activity relationship optimization campaign to develop an inhibitor of AraC family transcriptional activators, we discovered an unexpected transformation of a previously reported inhibitor that occurs under the assay conditions. Once placed in the assay media, the 3,4-disubstituted dihydroquinoline core of the active analogue rapidly undergoes a decomposition reaction to a quaternary 3-substituted biquinolinium. Further examination established an SAR for this chemotype while also demonstrating its resilience to irreversible binding of biologically relevant nucleophiles
Cyclin-Dependent Kinase 5 (CDK5) Controls Melanoma Cell Motility, Invasiveness, and Metastatic Spread—Identification of a Promising Novel therapeutic target
Despite considerable progress in recent years, the overall prognosis of metastatic malignant melanoma remains poor, and curative therapeutic options are lacking. Therefore, better understanding of molecular mechanisms underlying melanoma progression and metastasis, as well as identification of novel therapeutic targets that allow inhibition of metastatic spread, are urgently required. The current study provides evidence for aberrant cyclin-dependent kinase 5 (CDK5) activation in primary and metastatic melanoma lesions by overexpression of its activator protein CDK5R1/p35. Moreover, using melanoma in vitro model systems, shRNA-mediated inducible knockdown of CDK5 was found to cause marked inhibition of cell motility, invasiveness, and anchorage-independent growth, while at the same time net cell growth was not affected. In vivo, CDK5 knockdown inhibited growth of orthotopic xenografts as well as formation of lung and liver colonies in xenogenic injection models mimicking systemic metastases. Inhibition of lung metastasis was further validated in a syngenic murine melanoma model. CDK5 knockdown was accompanied by dephosphorylation and overexpression of caldesmon, and concomitant caldesmon knockdown rescued cell motility and proinvasive phenotype. Finally, it was found that pharmacological inhibition of CDK5 activity by means of roscovitine as well as by a novel small molecule CDK5-inhibitor, N-(5-isopropylthiazol-2-yl)-3-phenylpropanamide, similarly caused marked inhibition of invasion/migration, colony formation, and anchorage-independent growth of melanoma cells. Thus, experimental data presented here provide strong evidence for a crucial role of aberrantly activated CDK5 in melanoma progression and metastasis and establish CDK5 as promising target for therapeutic intervention
Synthesis of a Family of Spirocyclic Scaffolds: Building Blocks for the Exploration of Chemical Space
This report describes the preparation
of a series of 17 novel racemic
spirocyclic scaffolds that are intended for the creation of compound
libraries by parallel synthesis for biological screening. Each scaffold
features two points of orthogonal diversification. The scaffolds are
related to each other in four ways: (1) through stepwise changes in
the size of the nitrogen-bearing ring; (2) through the oxidation state
of the carbon-centered point of diversification; (3) through the relative
stereochemical orientation of the two diversification sites in those
members that are stereogenic; and (4) through the provision of both
saturated and unsaturated versions of the furan ring in the scaffold
series derived from 3-piperidone. The scaffolds provide incremental
changes in the relative orientation of the diversity components that
would be introduced onto them. The scaffolds feature high sp<sup>3</sup> carbon content which is essential for the three-dimensional exploration
of chemical space. This characteristic is particularly evident in
those members of this family that bear two stereocenters, i.e., the
two series derived from 3-piperidone and 3-pyrrolidinone. In the series
derived from 3-piperidone we were able to “split the difference”
between the two diastereomers by preparation of their corresponding
unsaturated version
Solution-Phase Synthesis of a Diverse Library of Benzisoxazoles Utilizing the [3 + 2] Cycloaddition of in Situ-Generated Nitrile Oxides and Arynes
A library
of benzisoxazoles has been synthesized by the [3 + 2]
cycloaddition of nitrile oxides with arynes and further diversified
by acylation/sulfonylation and palladium-catalyzed coupling processes.
The eight key intermediate benzisoxazoles have been prepared by the
reaction of <i>o</i>-(trimethylsilyl)Âaryl triflates and
chlorooximes in the presence of CsF in good to excellent yields under
mild reaction conditions. These building blocks have been used as
the key components of a diverse set of 3,5,6-trisubstituted benzisoxazoles