395 research outputs found

    FPGA Implementation of Hardware Architecture for H264/AV Codec Standards

    Get PDF
    The proposed work is a modern hardware based architecture for performing transformation, quantisation and prediction is designed which is used for H.264/AVC video standards. This designed hardware find its importance in advanced H264 encoders which are repeatedly find its application in HDTV applications. The H264/AV Codec does video compression and video decompression for prospect broadband and wireless networks.  A low complexity discrete cosine transform is used by DSP embedded multiplier. An intra-prediction equation are employed to get low latency, high throughput, efficient utilization of resources. The proposed architecture also employs both pipeline & parallel process methods. The proposed architecture is implemented using VHDL and synthesised for Virtex 5, and the device is 5vlx50tff665

    Artificial Neural Network Models for Material Classification by Photon Scattering Analysis

    Get PDF
    This article explains the risk factors involved in a business. In each type of business, there are certain risk factors for the implementation of anything in the business. The type of risks involved can depend upon many factors. It also depends on the type of business an organisation is doing. But it is very important that the risk analyst does all the analysis of the risks that might arise in future and must take necessary actions in order to avoid those risks. The risk analyst can also try to reduce the impact of the risks on the business. Therefore, it is very important that the risk analyst should have the knowledge of how to analyse risk and then can act upon them

    Weak Lensing Effect on CMB in the Presence of a Dipole Anisotropy

    Full text link
    We investigate weak lensing effect on cosmic microwave background (CMB) in the presence of dipole anisotropy. The approach of flat-sky approximation is considered. We determine the functions σ02\sigma_0^2 and σ22\sigma_2^2 that appear in expressions of the lensed CMB power spectrum in the presence of a dipole anisotropy. We determine the correction to B-mode power spectrum which is found to be appreciable at low multipoles (ll). However, the temperature and E-mode power spectrum are not altered significantly.Comment: 9 page

    Scale Invariance as a Solution to the Cosmological Constant Problem

    Full text link
    We show that scale invariance provides a solution to the fine tuning problem of the cosmological constant. We construct a generalization of the standard model of particle physics which displays exact quantum scale invariance. The matter action is invariant under global scale transformations in arbitrary dimensions. However the gravitational action breaks scale invariance explicitly. The scale symmetry is broken spontaneously in the matter sector of the theory. We show that the contribution to the vacuum energy and hence the cosmological constant is identically zero from the matter sector within the full quantum theory. However the gravitational sector may give non-zero contributions to the cosmological constant at loop orders. No fine tuning may be required at loop orders since the matter sector gives zero contribution to the cosmological constant. We also show that we do not require full scale invariance in order to constrain the vacuum energy from the matter sector. We only require invariance under pseudoscale transformations. Using this idea and motivated by the concept of unimodular gravity we propose an alternative model. In this case also we show that matter sector gives exactly zero contribution to the vacuum energy.Comment: 12 pages, no figure

    A Survey on Layout Implementation and Analysis of Different SRAM Cell Topologies

    Get PDF
    Because powered widgets are frequently used, the primary goal of electronics is to design low-power devices. Because of its applications in low-energy computing, memory cell operation with low voltage consumption has become a major interest in memory cell design. Because of specification changes in scaled methodologies, the only critical method for the success of low-voltage SRAM design is the stable operation of SRAM. The traditional SRAM cell enables high-density and fast differential sensing but suffers from semi-selective and read-risk issues. The simulation results show that the proposed design provides the fastest read operation and overall power delay product optimization. Compared to the current topologies of 6T, 8T, and 10T, while a traditional SRAM cell solves the reading disruption problem, previous strategies for solving these problems have been ineffective due to low efficiency, data-dependent leakage, and high energy per connection. Our primary goal is to reduce power consumption, improve read performance, and reduce the area and power of the proposed design cell work. The proposed leakage reduction design circuit has been implemented on the micro-wind tool. Delay and power consumption are important factors in memory cell performance. The primary goal of this project is to create a low-power SRAM cell

    DESIGNING AND OPTIMIZATION OF NAPROXEN SODIUM DEFORMABLE VESICULAR SYSTEMS THROUGH FACTORIAL DESIGN: BOX BEHENKEN MODEL

    Get PDF
    Objective: The objective of this investigation was to develop and statistically optimize deformable vesicles such as transfersomes and transethosomes of Naproxen sodium by employing 33factorial designs through software Design expert version 12 (Box–Behnken design) for dermal delivery. Methods: The levels of the drug, phosphatidylcholine, and span 80 (independent variables) were varied to study the influence on vesicle size and % entrapment efficiency (dependent variables) of transfersomes and for transethosomes, the levels of phosphatidylcholine, ethanol, and span 80 were selected as independent variables Second-order quadratic polynomial equation, 2D and 3D contour plots represented the relationship between variables and desired response. The optimization process was carried out using desirability plots and point prediction techniques. Results: Results of the present study demonstrated that optimized transfersomes and transethosomes showed vesicle sizes of 114.91 nm and 102.91 nm respectively, while entrapment efficiency of 80.11 % and 86.97%, respectively. Both formulations showed high zeta potential values indicating the stability of the optimized formulation. ANOVA statistical results showed a significant difference (P<0.05). Conclusion: The results indicated that the independent variable plays a crucial role in optimizing a formulation that can be used for further research studies. Present preliminary study data provided strong evidence that the optimized deformable vesicular formulations through box Behnken factorial design can be a potentially useful drug carrier for naproxen sodium dermal delivery with minimum vesicle size and efficient entrapment efficiency

    Energy Efficient Branch and Bound based On-Chip Irregular Network Design

    Get PDF
    Here we present a technique which construct the topology for heterogeneous SoC, (Application Specific NoC) such that total Dynamic communication energy is optimized. The topology is certain to satisfy the constraints of node degree as well the link length. We first layout the topology by finding the shortest path between traffic characteristics with the branch and bound optimization technique. Deadlock is dealt with escape routing using Spanning tree. Investigation outcome show that the proposed design methodology is fast and achieves significant dynamic energy gain

    Cosmological Perturbation Analysis in a Scale Invariant Model of Gravity

    Full text link
    We consider a model for gravity that is invariant under global scale transformations. It includes one extra real scalar field coupled non-minimally to the gravity fields. In this model all the dimensionful parameters like the gravitational constant and the cosmological constant etc. are generated by a solution of the classical equations of motion which breaks scale invariance. In this paper we demonstrate the stability of such a solution against small perturbations in a flat FRW background by making a perturbative expansion around this solution and solving the resulting equations linear in the perturbations.Comment: 9 pages, 1 figur
    • …
    corecore