47 research outputs found

    How will the Internet of Things enable Augmented Personalized Health?

    Full text link
    Internet-of-Things (IoT) is profoundly redefining the way we create, consume, and share information. Health aficionados and citizens are increasingly using IoT technologies to track their sleep, food intake, activity, vital body signals, and other physiological observations. This is complemented by IoT systems that continuously collect health-related data from the environment and inside the living quarters. Together, these have created an opportunity for a new generation of healthcare solutions. However, interpreting data to understand an individual's health is challenging. It is usually necessary to look at that individual's clinical record and behavioral information, as well as social and environmental information affecting that individual. Interpreting how well a patient is doing also requires looking at his adherence to respective health objectives, application of relevant clinical knowledge and the desired outcomes. We resort to the vision of Augmented Personalized Healthcare (APH) to exploit the extensive variety of relevant data and medical knowledge using Artificial Intelligence (AI) techniques to extend and enhance human health to presents various stages of augmented health management strategies: self-monitoring, self-appraisal, self-management, intervention, and disease progress tracking and prediction. kHealth technology, a specific incarnation of APH, and its application to Asthma and other diseases are used to provide illustrations and discuss alternatives for technology-assisted health management. Several prominent efforts involving IoT and patient-generated health data (PGHD) with respect converting multimodal data into actionable information (big data to smart data) are also identified. Roles of three components in an evidence-based semantic perception approach- Contextualization, Abstraction, and Personalization are discussed

    An Ontology Design Pattern for Representing Causality

    Get PDF
    The causal pattern is a proposed ontology design pattern for representing the structure of causal relations in a knowledge graph. This pattern is grounded in the concepts defined and used by the CausalAI community i.e., Causal Bayesian Networks and do-calculus. Specifically, the pattern models three primary concepts: (1) causal relations, (2) causal event roles, and (3) causal effect weights. Two use cases involving a sprinkler system and asthma patients are provided along with their relevant competency questions

    Causal Knowledge Graph for Scene Understanding in Autonomous Driving

    Get PDF
    The current approaches to autonomous driving focus on learning from observation or simulated data. These approaches are based on correlations rather than causation. For safety-critical applications, like autonomous driving, it’s important to represent causal dependencies among variables in addition to the domain knowledge expressed in a knowledge graph. This will allow for a better understanding of causation during scenarios that have not been observed, such as malfunctions or accidents. The causal knowledge graph, coupled with domain knowledge, demonstrates how autonomous driving scenes can be represented, learned, and explained using counterfactual and intervention reasoning to infer and understand the behavior of entities in the scene

    Causal Neuro-Symbolic AI for Root Cause Analysis in Smart Manufacturing

    Get PDF
    Root cause analysis is the process of investigating the cause of a failure and providing measures to prevent future failures. It is an active area of research due to the complexities in manufacturing production lines and the vast amount of data that requires manual inspection. We present a combined approach of causal neuro-symbolic AI for root cause analysis to identify failures in smart manufacturing production lines. We have used data from an industry-grade rocket assembly line and a simulation package to demonstrate the effectiveness and relevance of our approach

    MetaverseKG: Knowledge Graph for Engineering and Design Application in Industrial Metaverse

    Get PDF
    While the term Metaverse was first coined by the author Neal Stephenson in 1992 in his science fiction novel “Snow Crash”, today the vision of an integrated virtual world is becoming a reality across different sectors. Applications in gaming and consumer products are gaining traction, industrial metaverse applications are, still in their early stages of development with one of the challenges being interoperability across various metaverse development platforms and existing software tools. In this work we propose the use of a knowledge graph based semantic data exchange layer, the Metaverse Knowledge Graph, to enable seamless transfer of information across platforms. We discuss how this approach addresses the challenge of interoperability and leads to better interactivity and synchronization across tools

    Personalized Digital Phenotype Score, Healthcare Management and Intervention Strategies Using Knowledge Enabled Digital Health Framework for Pediatric Asthma

    Get PDF
    Asthma is a personalized, and multi-trigger respiratory condition which requires continuous monitoring and management of symptoms and medication adherence. We developed kHealth: Knowledge-enabled Digital Healthcare Framework to monitor and manage the asthma symptoms, medication adherence, lung function, daily activity, sleep quality, indoor, and outdoor environmental triggers of pediatric asthma patients. The kHealth framework collects up to 1852 data points per patient per day. It is practically impossible for the clinicians, parents, and the patient to analyze this vast amount of multimodal data collected from the kHealth framework. In this chapter, we describe the personalized scores, clinically relevant asthma categorization using digital phenotype score, actionable insights, and potential intervention strategies for better pediatric asthma management

    ACM web conference 2023

    Get PDF
    Improving the performance and explanations of ML algorithms is a priority for adoption by humans in the real world. In critical domains such as healthcare, such technology has significant potential to reduce the burden on humans and considerably reduce manual assessments by providing quality assistance at scale. In today’s data-driven world, artificial intelligence (AI) systems are still experiencing issues with bias, explainability, and human-like reasoning and interpretability. Causal AI is the technique that can reason and make human-like choices making it possible to go beyond narrow Machine learning-based techniques and can be integrated into human decision-making. It also offers intrinsic explainability, new domain adaptability, and bias-free predictions that work with datasets of all sizes. In this tutorial of type lecture style, we detail how a richer representation of causality in AI systems using a knowledge graph (KG) based approach is needed for intervention and counterfactual reasoning (Figure 1), how do we get to model-based and domain explainability, how causal representations helps in web and health care

    Ontology Design Metapattern for RelationType Role Composition

    Get PDF
    RelationType is a metapattern that specifies a property in a knowledge graph that directly links the head of a triple with the type of the tail. This metapattern is useful for knowledge graph link prediction tasks, specifically when one wants to predict the type of a linked entity rather than the entity instance itself. The RelationType metapattern serves as a template for future extensions of an ontology with more fine-grained domain information

    “How Is My Child’s Asthma?” Digital Phenotype and Actionable Insights for Pediatric Asthma

    Get PDF
    Background: In the traditional asthma management protocol, a child meets with a clinician infrequently, once in 3 to 6 months, and is assessed using the Asthma Control Test questionnaire. This information is inadequate for timely determination of asthma control, compliance, precise diagnosis of the cause, and assessing the effectiveness of the treatment plan. The continuous monitoring and improved tracking of the child’s symptoms, activities, sleep, and treatment adherence can allow precise determination of asthma triggers and a reliable assessment of medication compliance and effectiveness. Digital phenotyping refers to moment-by-moment quantification of the individual-level human phenotype in situ using data from personal digital devices, in particular, mobile phones. The kHealth kit consists of a mobile app, provided on an Android tablet, that asks timely and contextually relevant questions related to asthma symptoms, medication intake, reduced activity because of symptoms, and nighttime awakenings; a Fitbit to monitor activity and sleep; a Microlife Peak Flow Meter to monitor the peak expiratory flow and forced exhaled volume in 1 second; and a Foobot to monitor indoor air quality. The kHealth cloud stores personal health data and environmental data collected using Web services. The kHealth Dashboard interactively visualizes the collected data. Objective: The objective of this study was to discuss the usability and feasibility of collecting clinically relevant data to help clinicians diagnose or intervene in a child’s care plan by using the kHealth system for continuous and comprehensive monitoring of child’s symptoms, activity, sleep pattern, environmental triggers, and compliance. The kHealth system helps in deriving actionable insights to help manage asthma at both the personal and cohort levels. The Digital Phenotype Score and Controller Compliance Score introduced in the study are the basis of ongoing work on addressing personalized asthma care and answer questions such as, “How can I help my child better adhere to care instructions and reduce future exacerbation?” Methods: The Digital Phenotype Score and Controller Compliance Score summarize the child’s condition from the data collected using the kHealth kit to provide actionable insights. The Digital Phenotype Score formalizes the asthma control level using data about symptoms, rescue medication usage, activity level, and sleep pattern. The Compliance Score captures how well the child is complying with the treatment protocol. We monitored and analyzed data for 95 children, each recruited for a 1- or 3-month-long study. The Asthma Control Test scores obtained from the medical records of 57 children were used to validate the asthma control levels calculated using the Digital Phenotype Scores. Results: At the cohort level, we found asthma was very poorly controlled in 37% (30/82) of the children, not well controlled in 26% (21/82), and well controlled in 38% (31/82). Among the very poorly controlled children (n=30), we found 30% (9/30) were highly compliant toward their controller medication intake—suggesting a re-evaluation for change in medication or dosage—whereas 50% (15/30) were poorly compliant and candidates for a more timely intervention to improve compliance to mitigate their situation. We observed a negative Kendall Tau correlation between Asthma Control Test scores and Digital Phenotype Score as −0.509 (P\u3c.01). Conclusions: kHealth kit is suitable for the collection of clinically relevant information from pediatric patients. Furthermore, Digital Phenotype Score and Controller Compliance Score, computed based on the continuous digital monitoring, provide the clinician with timely and detailed evidence of a child’s asthma-related condition when compared with the Asthma Control Test scores taken infrequently during clinic visits

    Determination of Personalized Asthma Triggers From Multimodal Sensing and a Mobile App: Observational Study

    Get PDF
    Background: Asthma is a chronic pulmonary disease with multiple triggers. It can be managed by strict adherence to an asthma care plan and by avoiding these triggers. Clinicians cannot continuously monitor their patients’ environment and their adherence to an asthma care plan, which poses a significant challenge for asthma management. Objective: In this study, pediatric patients were continuously monitored using low-cost sensors to collect asthma-relevant information. The objective of this study was to assess whether kHealth kit, which contains low-cost sensors, can identify personalized triggers and provide actionable insights to clinicians for the development of a tailored asthma care plan. Methods: The kHealth asthma kit was developed to continuously track the symptoms of asthma in pediatric patients and monitor the patients’ environment and adherence to their care plan for either 1 or 3 months. The kit consists of an Android app–based questionnaire to collect information on asthma symptoms and medication intake, Fitbit to track sleep and activity, the Peak Flow meter to monitor lung functions, and Foobot to monitor indoor air quality. The data on the patient’s outdoor environment were collected using third-party Web services based on the patient’s zip code. To date, 107 patients consented to participate in the study and were recruited from the Dayton Children’s Hospital, of which 83 patients completed the study as instructed. Results: Patient-generated health data from the 83 patients who completed the study were included in the cohort-level analysis. Of the 19% (16/83) of patients deployed in spring, the symptoms of 63% (10/16) and 19% (3/16) of patients suggested pollen and particulate matter (PM2.5), respectively, to be their major asthma triggers. Of the 17% (14/83) of patients deployed in fall, symptoms of 29% (4/17) and 21% (3/17) of patients suggested pollen and PM2.5, respectively, to be their major triggers. Among the 28% (23/83) of patients deployed in winter, PM2.5 was identified as the major trigger for 83% (19/23) of patients. Similar correlations were not observed between asthma symptoms and factors such as ozone level, temperature, and humidity. Furthermore, 1 patient from each season was chosen to explain, in detail, his or her personalized triggers by observing temporal associations between triggers and asthma symptoms gathered using the kHealth asthma kit. Conclusions: The continuous monitoring of pediatric asthma patients using the kHealth asthma kit generates insights on the relationship between their asthma symptoms and triggers across different seasons. This can ultimately inform personalized asthma management and intervention plans
    corecore