17 research outputs found

    Intensification of Acidogenic Fermentation for the Production of Biohydrogen and Volatile Fatty Acids—A Perspective

    Get PDF
    Utilising ‘wastes’ as ‘resources’ is key to a circular economy. While there are multiple routes to waste valorisation, anaerobic digestion (AD)—a biochemical means to breakdown organic wastes in the absence of oxygen—is favoured due to its capacity to handle a variety of feedstocks. Traditional AD focuses on the production of biogas and fertiliser as products; however, such low-value products combined with longer residence times and slow kinetics have paved the way to explore alternative product platforms. The intermediate steps in conventional AD—acidogenesis and acetogenesis—have the capability to produce biohydrogen and volatile fatty acids (VFA) which are gaining increased attention due to the higher energy density (than biogas) and higher market value, respectively. This review hence focusses specifically on the production of biohydrogen and VFAs from organic wastes. With the revived interest in these products, a critical analysis of recent literature is needed to establish the current status. Therefore, intensification strategies in this area involving three main streams: substrate pre-treatment, digestion parameters and product recovery are discussed in detail based on literature reported in the last decade. The techno-economic aspects and future pointers are clearly highlighted to drive research forward in relevant areas

    Mesophilic fermentative hydrogen production from sewage biosolids

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Overcoming nutrient loss during volatile fatty acid recovery from fermentation media by addition of electrodialysis to a polytetrafluoroethylene membrane stack

    No full text
    This research investigated the use of an innovative polytetrafluoroethylene (PTFE) membrane configuration coupled to electrodialysis for the in-situ removal of Volatile Fatty Acids (VFAs) from a mixed culture bioreactor. It was shown that by stacking the PTFE membranes to increase the active membrane surface area, shortened VFA recovery times was seen. The addition of electrodialysis to the PTFE membrane stack enabled the continuous extraction of VFAs from fermentation media whilst retaining essential nutrients and organic compounds in the diluate stream. Ammonium, phosphate and nitrate remained in the diluate chamber and did not cross the PTFE membrane stack. Up to 98% of total VFA recovery was achieved with the PTFE and electrodialysis system. The process was shown to extract from a reservoir of low VFA concentration to a reservoir with a VFA concentration 10 times higher. These results show that the addition of electrodialysis to PTFE provides a robust solution for the in-situ extraction of VFAs from fermentation media within bioreactors to support the demand for sustainable fuels and green chemical feedstocks
    corecore