319 research outputs found
Air Shower Simulations in a Hybrid Approach using Cascade Equations
A new hybrid approach to air shower simulations is described. At highest
energies, each particle is followed individually using the traditional Monte
Carlo method; this initializes a system of cascade equations which are
applicable for energies such that the shower is one-dimensional. The cascade
equations are solved numerically down to energies at which lateral spreading
becomes significant, then their output serves as a source function for a
3-dimensional Monte Carlo simulation of the final stage of the shower. This
simulation procedure reproduces the natural fluctuations in the initial stages
of the shower, gives accurate lateral distribution functions, and provides
detailed information about all low energy particles on an event-by-event basis.
It is quite efficient in computation time.Comment: 19 Pages, 10 Figures accepted version with more explanations about
source functions, in print PR
Parallel processing of radio signals and detector arrays in CORSIKA 8
This contribution describes some recent advances in the parallelization of the generation and processing of radio signals emitted by particle showers in CORSIKA 8. CORSIKA 8 is a Monte Carlo simulation framework for modeling ultra-high energy particle cascades in astroparticle physics. The aspects associated with the generation and processing of radio signals in antennas arrays are reviewed, focusing on the key design opportunities and constraints for deployment of multiple threads on such calculations. The audience is also introduced to Gyges, a lightweight, header-only and flexible multithread self-adaptive scheduler written compliant with C++17 and C++20, which is used to distribute and manage the worker computer threads during the parallel calculations. Finally, performance and scalability measurements are provided and the integration into CORSIKA 8 is commented
Hadron cascades in CORSIKA 8
We present characteristics of hadronic cascades from interactions of cosmic rays in the atmosphere, simulated by the novel CORSIKA 8 framework. The simulated spectra of secondaries, such as pions, kaons, baryons and muons, are compared with the cascade equations solvers MCEq in air shower mode, and full 3D air shower Monte Carlo simulations using the legacy CORSIKA 7. A novel capability of CORSIKA 8 is the simulation of cascades in media other than air, widening the scope of potential applications. We demonstrate this by simulating cosmic ray showers in the Mars atmosphere, as well as simulating a shower traversing from air into water. The CORSIKA 8 framework demonstrates good accuracy and robustness in comparison with previous results, in particular in those relevant for the production of muons in air showers. Furthermore, the impact of forward ρ production on air showers is studied and illustrated
Combined fit to the spectrum and composition data measured by the Pierre Auger Observatory including magnetic horizon effects
The measurements by the Pierre Auger Observatory of the energy spectrum and mass composition of cosmic rays can be interpreted assuming the presence of two extragalactic source populations, one dominating the flux at energies above a few EeV and the other below. To fit the data ignoring magnetic field effects, the high-energy population needs to accelerate a mixture of nuclei with very hard spectra, at odds with the approximate E shape expected from diffusive shock acceleration. The presence of turbulent extragalactic magnetic fields in the region between the closest sources and the Earth can significantly modify the observed CR spectrum with respect to that emitted by the sources, reducing the flux of low-rigidity particles that reach the Earth. We here take into account this magnetic horizon effect in the combined fit of the spectrum and shower depth distributions, exploring the possibility that a spectrum for the high-energy population sources with a shape closer to E be able to explain the observations
- …