125 research outputs found
The length of homology required for gene targeting in embryonic stem cells
Homologous recombination has been used to introduce site-specific mutations into murine embryonic stem (ES) cells with both insertion and replacement vectors. In this study, we compared the frequency of gene targeting with various lengths of homology and found a dramatic increase in targeting with an increase in homology from 1.3 to 6.8 kb. We examined in detail the relationship between the length of homology and the gene-targeting frequency for replacement vectors and found that a critical length of homology is needed for targeting. Adding greater lengths of homology to this critical length has less of an effect on the targeting frequency. We also analyzed the lengths of homology necessary on both arms of the vector for gene replacement events and found that 472 bp of homology is used as efficiently as 1.2 kb in the formation and resolution of crossover junctions
Goosecoid acts cell autonomously in mesenchyme-derived tissues during craniofacial development
Mice homozygous for a targeted deletion of the homeobox gene Goosecoid (Gsc) have multiple craniofacial defects. To understand the mechanisms responsible for these defects, the behavior of Gsc-null cells was examined in morula aggregation chimeras. In these chimeras, Gsc-null cells were marked with beta-galactosidase (beta-gal) activity using the ROSA26 lacZ allele. In addition, mice with a lacZ gene that had been introduced into the Gsc locus were used as a guide to visualize the location of Gsc-expressing cells. In Gsc-null\u3c-\u3ewild-type chimeras, tissues that would normally not express Gsc were composed of both Gsc-null and wild-type cells that were well mixed, reflecting the overall genotypic composition of the chimeras. However, craniofacial tissues that would normally express Gsc were essentially devoid of Gsc-null cells. Furthermore, the nasal capsules and mandibles of the chimeras had defects similar to Gsc-null mice that varied in severity depending upon the proportion of Gsc-null cells. These results combined with the analysis of Gsc-null mice suggest that Gsc functions cell autonomously in mesenchyme-derived tissues of the head. A developmental analysis of the tympanic ring bone, a bone that is always absent in Gsc-null mice because of defects at the cell condensation stage, showed that Gsc-null cells had the capacity to form the tympanic ring condensation in the presence of wild-type cells. However, analysis of the tympanic ring bones of 18.5 d.p.c. chimeras suggests that Gsc-null cells were not maintained. The participation of Gsc-null cells in the tympanic ring condensation of chimeras may be an epigenetic phenomenon that results in a local environment in which more precursor cells are present. Thus, the skeletal defects observed in Gsc-null mice may reflect a regional reduction of precursor cells during embryonic development
Implantation and Gastrulation Abnormalities Characterize Early Embryonic Lethal Mouse Lines [preprint]
The period of development between the zygote and embryonic day 9.5 in mice includes multiple developmental milestones essential for embryogenesis. The preeminence of this period of development has been illustrated in loss of function studies conducted by the International Mouse Phenotyping Consortium (IMPC) which have shown that close to one third of all mouse genes are essential for survival to weaning age and a significant number of mutations cause embryo lethality before E9.5. Here we report a systematic analysis of 21 pre-E9.5 lethal lines generated by the IMPC. Analysis of pre- and post-implantation embryos revealed that the majority of the lines exhibit mutant phenotypes that fall within a window of development between implantation and gastrulation with few pre-implantation and no post-gastrulation phenotypes. Our study provides multiple genetic inroads into the molecular mechanisms that control early mammalian development and the etiology of human disease, in particular, the genetic bases of infertility and pregnancy loss. We propose a strategy for an efficient assessment of early embryonic lethal mutations that can be used to assign phenotypes to developmental milestones and outline the time of lethality
Goosecoid is not an essential component of the mouse gastrula organizer but is required for craniofacial and rib development
Goosecoid (gsc) is an evolutionarily conserved homeobox gene expressed in the gastrula organizer region of a variety of vertebrate embryos, including zebrafish, Xenopus, chicken and mouse. To understand the role of gsc during mouse embryogenesis, we generated gsc-null mice by gene targeting in embryonic stem cells. Surprisingly, gsc-null embryos gastrulated and formed the primary body axes; gsc-null mice were born alive but died soon after birth with numerous craniofacial defects. In addition, rib fusions and sternum abnormalities were detected that varied depending upon the genetic background. Transplantation experiments suggest that the ovary does not provide gsc function to rescue gastrulation defects. These results demonstrate that gsc is not essential for organizer activity in the mouse but is required later during embryogenesis for craniofacial and rib cage development
Goosecoid and HNF-3beta genetically interact to regulate neural tube patterning during mouse embryogenesis
The homeobox gene goosecoid (gsc) and the winged-helix gene Hepatic Nuclear Factor-3beta (HNF-3beta) are co-expressed in all three germ layers in the anterior primitive streak and at the rostral end of mouse embryos during gastrulation. In this paper, we have tested the possibility of functional synergism or redundancy between these two genes during embryogenesis by generating double-mutant mice for gsc and HNF-3beta. Double-mutant embryos of genotype gsc(-/-);HNF-3beta(+/-) show a new phenotype as early as embryonic days 8.75. Loss of Sonic hedgehog (Shh) and HNF-3beta expression was observed in the notochord and ventral neural tube of these embryos. These results indicate that gsc and HNF-3beta interact to regulate Shh expression and consequently dorsal-ventral patterning in the neural tube. In the forebrain of the mutant embryos, severe growth defects and absence of optic vesicles could involve loss of expression of fibroblast growth factor-8, in addition to Shh. Our results also suggest that interaction between gsc and HNF-3beta regulates other signalling molecules required for proper development of the foregut, branchial arches and heart
TIP55, a splice isoform of the KAT5 acetyltransferase, is essential for developmental gene regulation and organogenesis
Regulation of chromatin structure is critical for cell type-specific gene expression. Many chromatin regulatory complexes exist in several different forms, due to alternative splicing and differential incorporation of accessory subunits. However, in vivo studies often utilize mutations that eliminate multiple forms of complexes, preventing assessment of the specific roles of each. Here we examined the developmental roles of the TIP55 isoform of the KAT5 histone acetyltransferase. In contrast to the pre-implantation lethal phenotype of mice lacking all four Kat5 transcripts, mice specifically deficient for Tip55 die around embryonic day 11.5 (E11.5). Prior to developmental arrest, defects in heart and neural tube were evident in Tip55 mutant embryos. Specification of cardiac and neural cell fates appeared normal in Tip55 mutants. However, cell division and survival were impaired in heart and neural tube, respectively, revealing a role for TIP55 in cellular proliferation. Consistent with these findings, transcriptome profiling revealed perturbations in genes that function in multiple cell types and developmental pathways. These findings show that Tip55 is dispensable for the pre- and early post-implantation roles of Kat5, but is essential during organogenesis. Our results raise the possibility that isoform-specific functions of other chromatin regulatory proteins may play important roles in development
The morphogenetic role of midline mesendoderm and ectoderm in the development of the forebrain and the midbrain of the mouse embryo
The anterior midline tissue (AML) of the late gastrula mouse embryo comprises the axial mesendoderm and the ventral neuroectoderm of the prospective forebrain, midbrain and rostral hindbrain. In this study, we have investigated the morphogenetic role of defined segments of the AML by testing their inductive and patterning activity and by assessing the impact of their ablation on the patterning of the neural tube at the early-somite-stage. Both rostral and caudal segments of the AML were found to induce neural gene activity in the host tissue; however, the de novo gene activity did not show any regional characteristic that might be correlated with the segmental origin of the AML. Removal of the rostral AML that contains the prechordal plate resulted in a truncation of the head accompanied by the loss of several forebrain markers. However, the remaining tissues reconstituted Gsc and Shh activity and expressed the ventral forebrain marker Nkx2.1. Furthermore, analysis of Gsc-deficient embryos reveals that the morphogenetic function of the rostral AML requires Gsc activity. Removal of the caudal AML led to a complete loss of midline molecular markers anterior to the 4th somite. In addition, Nkx2.1 expression was not detected in the ventral neural tube. The maintenance and function of the rostral AML therefore require inductive signals emanating from the caudal AML. Our results point to a role for AML in the refinement of the anteroposterior patterning and morphogenesis of the brain
A Non-Specific Effect Associated with Conditional Transgene Expression Based on Cre-loxP Strategy in Mice
Transgenes flanked by loxP sites have been widely used to generate transgenic mice where the transgene expression can be controlled spatially and temporally by Cre recombinase. Data from this approach has led to important conclusions in cancer, neurodevelopment and neurodegeneration. Using this approach to conditionally express micro RNAs (miRNAs) in mice, we found that Cre-mediated recombination in neural progenitor cells caused microcephaly in five of our ten independent transgenic lines. This effect was not associated with the types or the quantity of miRNAs being expressed, nor was it associated with specific target knockdown. Rather, it was correlated with the presence of multiple tandem transgene copies and inverted (head-to-head or tail-to-tail) transgene repeats. The presence of these inverted repeats caused a high level of cell death in the ventricular zone of the embryonic brain, where Cre was expressed. Therefore, results from this Cre-loxP approach to generate inducible transgenic alleles must be interpreted with caution and conclusions drawn in previous reports may need reexamination
- âŠ