5 research outputs found

    Nanobiomaterials for vascular biology and wound management: a review

    Get PDF
    Nanobiomaterials application into tissue repair and ulcer management is experiencing its golden age due to spurring diversity of translational opportunity to clinics. Over the past years, research in clinical science has seen a dramatic increase in medicinal materials at nanoscale those significantly contributed to tissue repair. This chapter outlines the new biomaterials at nanoscale those contribute state of the art clinical practices in ulcer management and wound healing due to their superior properties over traditional dressing materials. Designing new recipes for nanobiomaterials for tissue engineering practices spanning from micro to nano-dimension provided an edge over traditional wound care materials those mimic tissue in vivo. Clinical science stepped into design of artificial skin and extracellular matrix (ECM) components emulating the innate structures with higher degree of precision. Advances in materials sciences polymer chemistry have yielded an entire class of new nanobiomaterials ranging from dendrimer to novel electrospun polymer with biodegradable chemistries and controlled molecular compositions assisting wound healing adhesives, bandages and controlled of therapeutics in specialized wound care. Moreover, supportive regenerative medicine is transforming into rational, real and successful component of modern clinics providing viable cell therapy of tissue remodeling. Soft nanotechnology involving hydrogel scaffold revolutionized the wound management supplementing physicobiochemical and mechanical considerations of tissue regeneration. Moreover, this chapter also reviews the current challenges and opportunities in specialized nanobiomaterials formulations those are desirable for optimal localized wound care considering their in situ physiological microenvironment

    Peptide Controlled Shaping of Biomineralized Tin(II) Oxide into Flower-Like Particles

    No full text
    The size and morphology of metal oxide particles have a large impact on the physicochemical properties of these materials, e.g., the aspect ratio of particles affects their catalytic activity. Bioinspired synthesis routes give the opportunity to control precisely the structure and aspect ratio of the metal oxide particles by bioorganic molecules, such as peptides. This study focusses on the identification of tin(II) oxide (tin monoxide, SnO) binding peptides, and their effect on the synthesis of crystalline SnO microstructures. The phage display technique was used to identify the 7-mer peptide SnBP01 (LPPWKLK), which shows a high binding affinity towards crystalline SnO. It was found that the derivatives of the SnBP01 peptide, varying in peptide length and thus in their interaction, significantly affect the aspect ratio and the size dimension of mineralized SnO particles, resulting in flower-like morphology. Furthermore, the important role of the N-terminal leucine residue in the peptide for the strong organic–inorganic interaction was revealed by FTIR investigations. This bioinspired approach shows a facile procedure for the detailed investigation of peptide-to-metal oxide interactions, as well as an easy method for the controlled synthesis of tin(II) oxide particles with different morphologies

    Controlled microfluidic droplet acoustoinjection on one chip

    No full text
    We present an all-in-one acoustofluidics device for controlled acoustic field-mediated injection of surfactant stabilized water-in-oil droplets. The microfluidic channels and interdigitated transducer (IDT) channels are produced on the same master wafer and cast within one PDMS slab, making our acoustofluidics device simple to construct while retaining the same height for all channels. The IDTs with a curved, serpentine, paired and focusing geometry are easily embedded into the PDMS slab by filling the IDT channels with low melting point metal alloy. In this article, we propose the working mechanism of our embedded IDTs, which we call acoustoinjection, and carry out a precise characterization by laser doppler vibrometry (LDV) and infrared imaging to describe the injection of droplets within microfluidic channels. Although we observe that the device has acoustic resonance in the MHz frequency domain, we show that it operates most efficiently for acoustoinjection in the kHz frequency domain. In this frequency domain, our acoustofluidics device generates a pressure wave that causes destabilization of the surfactant-supported droplet interface enabling the injection of aqueous solution into the water-phase of the droplet with minimum heat generation. We show droplet injection for different surfactant concentrations, droplet passing speeds, and injection rates with high accuracy. This integrated device has the potential to serve as an alternative to electric field mediated picoinjection technologies by acoustic field-mediated and non-harmful manipulation of droplets with bio-content
    corecore