5 research outputs found

    Implementation of ANN Controller Based UPQC Integrated with Microgrid

    Get PDF
    This study discusses how to increase power quality by integrating a unified power quality conditioner (UPQC) with a grid-connected microgrid for clean and efficient power generation. An Artificial Neural Network (ANN) controller for a voltage source converter-based UPQC is proposed to minimize the system’s cost and complexity by eliminating mathematical operations such as a-b-c to d-q-0 translation and the need for costly controllers such as DSPs and FPGAs. In this study, nonlinear unbalanced loads and harmonic supply voltage are used to assess the performance of PV-battery-UPQC using an ANN-based controller. Problems with voltage, such as sag and swell, are also considered. This work uses an ANN control system trained with the Levenberg-Marquardt backpropagation technique to provide effective reference signals and maintain the required dc-link capacitor voltage. In MATLAB/Simulink software, simulations of PV-battery-UPQC employing SRF-based control and ANN-control approaches are performed. The findings revealed that the proposed approach performed better, as presented in this paper. Furthermore, the influence of synchronous reference frame (SRF) and ANN controller-based UPQC on supply currents and the dc-link capacitor voltage response is studied. To demonstrate the superiority of the suggested controller, a comparison of percent THD in load voltage and supply current utilizing SRF-based control and ANN control methods is shown

    INFLUENCE OF STRAINING BEAMS ON THE SEISMIC FRAGILITY OF DOUBLE-COLUMN BRIDGE PIERS

    No full text
    The piers of girder bridges have a very important role on the safety of the structural system to earthquakes. This paper addresses the seismic fragility of double-column (DC) bridge piers by focusing on the influence of the straining beams and the direction of seismic waves. The seismic capacity of eight DC piers with different number and position of straining beams is first studied by pushover analyses. These results are used to derive empirical formulas for the seismic capacity of general DC piers and to define damage indices for prescriptive damage states. Finite element models of typical girder bridges with the different piers are carried out next to assess the seismic demand of these piers and to generate fragility curves by comparing their seismic demand and damage indices at the defined damage states. Results indicate that: (1) DC piers are more vulnerable when subjected to longitudinal ground motions compared with the case of transverse inputs; (2) the damage probability of the piers for transverse seismic inputs decreases with the increasing relative height of the straining beams; and (3) DC piers with two straining beams have enhanced performance in the transverse direction compared with those with a single straining beam

    Real-Time Controller Design Test Bench for High-Voltage Direct Current Modular Multilevel Converters

    No full text
    Modular multilevel converters (MMCs), with their inherent features and advantages over other conventional converters, have gained popularity and remain an ongoing topic of research. Many scholars have solved issues related to the operation, control, protection, and reliability of MMCs using simulation software and small hardware prototypes. We propose a novel approach for an MMC controller design with real-time systems. By utilizing a key benefit of LabVIEW Multisim co-simulation, an MMC control algorithm that can be deployed on a field-programmable gate array (FPGA) was developed in LabVIEW. The complete circuit was designed in Multisim, and a co-simulation was performed to drive an MMC model. The benefit of this topology is that control algorithms can be designed in a LabVIEW FPGA and tested with the Multisim co-simulation circuit to obtain simulation results. Once the controller works and provides satisfactory results, the same algorithm can be deployed in any NI (National Instruments) FPGA-based controller, like a compact remote input/output (RIO), to control real-time MMCs designed in an NI PCI eXtensions for Instrumentation (PXI) system. This method saves time and provides flexibility for effectively designing control algorithms and implementing them in an FPGA for real-time model implementation

    Innovative methods to improve the seismic performance of precast segmental and hybrid bridge columns under cyclic loading

    No full text
    This paper investigates the seismic performance of prefabricated segmental bridge columns (PSBCs) with hybrid post-tensioned tendons and energy dissipation (ED) bars under cyclic loading. PSBCs with unbonded and hybrid bonded prestressed tendons and columns incorporating ED bars are designed to improve the lateral strength, energy dissipation, and limit the residual drift. The PSBCs under cyclic loading were investigated using the three-dimensional finite element (FE) modeling platform ABAQUS. The FE model was calibrated against experimental results, with an overall error of less than 10%. The seismic performance of the proposed PSBCs was evaluated based on critical parameters, including lateral strength, residual plastic displacement, and the energy dissipation capacity. The results show that bonding the tendons in the plastic hinge region as opposed to the overall bonding along the column leads to a better cyclic performance. The lateral strength, and recentering abilities are further improved by bonding tendons up to 2/3 of the length in the plastic hinge region, along with 100–300 mm in the footing. It was also found that selecting a longitudinal length of ED bars crossing multiple precast segmental joints and having a circumferential spread of 70–90% of core concrete results in a higher bearing capacity and energy dissipation compared to ED bars crossing the single joint

    Efficient Hardware-in-the-Loop and Digital Control Techniques for Power Electronics Teaching

    No full text
    Power electronics is a core subject in electrical and electronics engineering at the undergraduate level. The rapid growth in the field of power electronics requires necessary changes in the curricula and practica for power electronics. The proposed next-generation power electronics teaching laboratory changes the learning paradigm for this subject and is for the first time used for teaching purposes in Pakistan. The proposed controller hardware-in-the-loop (CHIL) laboratory enabled students to design, control, and test power converters without the fear of component failure. CHIL setup allowed students to directly validate the physical controller without the need for any real power converter. This allowed students to obtain more repeatable results and perform extreme digital controller testing of power converters that are otherwise not possible on real hardware. Furthermore, students could start learning power electronics concepts with hardware from the beginning on a safe, versatile, fully interactive, and reconfigurable platform. The proposed laboratory meets the accreditation board for engineering and technology (ABET) student outcome criterion K such that students can continue with the same hardware and software toolset for graduate and research purposes. The knowledge and skills acquired during undergraduate years can help students create new solutions for power electronics systems and develop their expertise in the field of power electronics. The results obtained from the survey indicated that the majority of the students were satisfied with the laboratory setup. They also expressed appreciation over the provision of a high-level graphical language “LabVIEW” for the digital controllers compared to conventional low-level text-based languages such as VHDL, Verilog, C, or C++
    corecore