15 research outputs found

    The Role of Job Dissatisfaction on Low Productivity in Ghanaian Sectors: Finding the Way Forward.

    No full text
    The rate of employee turnover in Ghanaian sectors poses a threat to employers and, to some extent, the Ghanaian economy as a whole. Most Organizations in Ghana still face the challenge of satisfying their employees to enhance productivity or maximize profit. This has resulted in several organizations experiencing low productivity and minimized profit. This study sought to investigate the role of job dissatisfaction on low productivity in Ghana and the ways to curb this problem. The study employed a questionnaire and semi-structured interview questions to gather data from 150 respondents based on relevant theories and literature reviews. The study’s findings revealed that dissatisfied employees could negatively affect an organization’s productivity owing to the fact that they will possess negative attitudes and perform poorly. This was supported by the study’s hypothesis of having a positive relationship between job dissatisfaction and low productivity. The empirical findings from the study indicated that several factors account for job dissatisfaction among employees, with such issues being insufficient salary, poor working conditions, lack of motivation, and fewer opportunities for career development. It was suggested that fulfillment elements (productive work conditions, chances to advance, high salary, and motivation) should be proactive measures to boost productivity in Ghana

    Spasmolytic and Uroprotective Effects of Apigenin by Downregulation of TGF-β and iNOS Pathways and Upregulation of Antioxidant Mechanisms: In Vitro and In Silico Analysis

    No full text
    Apigenin is a phytochemical obtained from Chamomilla recutita. Its role in interstitial cystitis is not yet known. The present study is aimed at understanding the uroprotective and spasmolytic effects of apigenin in cyclophosphamide-induced interstitial cystitis. The uroprotective role of apigenin was analyzed by qRT-PCR, macroscopic analysis, Evans blue dye leakage, histological evaluation, and molecular docking. The spasmolytic response was measured by adding cumulative concentrations of apigenin to isolated bladder tissue pre-contracted with KCl (80 mM) and carbachol (10−9–10−4) on non-incubated and pre-incubated tissues with atropine, 4DAMP, methoctramine, glibenclamide, barium chloride, nifedipine, indomethacin, and propranolol. Apigenin inhibited pro-inflammatory cytokines (IL-6, TNF-α and TGF 1-β) and oxidant enzymes (iNOS) while increasing antioxidant enzymes (SOD, CAT, and GSH) in CYP-treated groups compared to the control. Apigenin restored normal tissue of the bladder by decreasing pain, edema, and hemorrhage. Molecular docking further confirmed the antioxidant and anti-inflammatory properties of apigenin. Apigenin produced relaxation against carbachol-mediated contractions, probably via blockade of M3 receptors, KATP channels, L-type calcium channels, and prostaglandin inhibition. While the blockade of M2 receptors, KIR channels, and β-adrenergic receptors did not contribute to an apigenin-induced spasmolytic effect, apigenin presented as a possible spasmolytic and uroprotective agent with anti-inflammatory, antioxidant effects by attenuating TGF-β/iNOS-related tissue damage and bladder muscle overactivity. Thus, it is a potential agent likely to be used in treatment of interstitial cystitis

    Routes and barriers associated with protein and peptide drug delivery system

    No full text
    Published in August 202

    Image_2_Caffeoyl-CoA 3-O-methyltransferase gene family in jute: Genome-wide identification, evolutionary progression and transcript profiling under different quandaries.jpeg

    No full text
    Jute (Corchorus sp.), is a versatile, naturally occurring, biodegradable material that holds the promising possibility of diminishing the extensive use of plastic bags. One of the major components of the cell wall, lignin plays both positive and negative roles in fiber fineness and quality. Although it gives mechanical strength to plants, an excess amount of it is responsible for the diminution of fiber quality. Among various gene families involved in the lignin biosynthesis, Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is the most significant and has remained mostly unexplored. In this study, an extensive in-silico characterization of the CCoAOMT gene family was carried out in two jute species (C. capsularis L. and C. olitoroius L.) by analyzing their structural, functional, molecular and evolutionary characteristics. A total of 6 CCoAOMT gene members were identified in each of the two species using published reference genomes. These two jute species showed high syntenic conservation and the identified CCoAOMT genes formed four clusters in the phylogenetic tree. Histochemical assay of lignin in both jute species could shed light on the deposition pattern in stems and how it changes in response to abiotic stresses. Furthermore, expression profiling using qPCR showed considerable alteration of CCoAOMT transcripts under various abiotic stresses and hormonal treatment. This study will lay a base for further analysis and exploration of target candidates for overexpression of gene silencing using modern biotechnological techniques to enhance the quality of this economically important fiber crop.</p

    DataSheet_1_Caffeoyl-CoA 3-O-methyltransferase gene family in jute: Genome-wide identification, evolutionary progression and transcript profiling under different quandaries.docx

    No full text
    Jute (Corchorus sp.), is a versatile, naturally occurring, biodegradable material that holds the promising possibility of diminishing the extensive use of plastic bags. One of the major components of the cell wall, lignin plays both positive and negative roles in fiber fineness and quality. Although it gives mechanical strength to plants, an excess amount of it is responsible for the diminution of fiber quality. Among various gene families involved in the lignin biosynthesis, Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is the most significant and has remained mostly unexplored. In this study, an extensive in-silico characterization of the CCoAOMT gene family was carried out in two jute species (C. capsularis L. and C. olitoroius L.) by analyzing their structural, functional, molecular and evolutionary characteristics. A total of 6 CCoAOMT gene members were identified in each of the two species using published reference genomes. These two jute species showed high syntenic conservation and the identified CCoAOMT genes formed four clusters in the phylogenetic tree. Histochemical assay of lignin in both jute species could shed light on the deposition pattern in stems and how it changes in response to abiotic stresses. Furthermore, expression profiling using qPCR showed considerable alteration of CCoAOMT transcripts under various abiotic stresses and hormonal treatment. This study will lay a base for further analysis and exploration of target candidates for overexpression of gene silencing using modern biotechnological techniques to enhance the quality of this economically important fiber crop.</p

    Table_1_Caffeoyl-CoA 3-O-methyltransferase gene family in jute: Genome-wide identification, evolutionary progression and transcript profiling under different quandaries.docx

    No full text
    Jute (Corchorus sp.), is a versatile, naturally occurring, biodegradable material that holds the promising possibility of diminishing the extensive use of plastic bags. One of the major components of the cell wall, lignin plays both positive and negative roles in fiber fineness and quality. Although it gives mechanical strength to plants, an excess amount of it is responsible for the diminution of fiber quality. Among various gene families involved in the lignin biosynthesis, Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is the most significant and has remained mostly unexplored. In this study, an extensive in-silico characterization of the CCoAOMT gene family was carried out in two jute species (C. capsularis L. and C. olitoroius L.) by analyzing their structural, functional, molecular and evolutionary characteristics. A total of 6 CCoAOMT gene members were identified in each of the two species using published reference genomes. These two jute species showed high syntenic conservation and the identified CCoAOMT genes formed four clusters in the phylogenetic tree. Histochemical assay of lignin in both jute species could shed light on the deposition pattern in stems and how it changes in response to abiotic stresses. Furthermore, expression profiling using qPCR showed considerable alteration of CCoAOMT transcripts under various abiotic stresses and hormonal treatment. This study will lay a base for further analysis and exploration of target candidates for overexpression of gene silencing using modern biotechnological techniques to enhance the quality of this economically important fiber crop.</p

    Image_1_Caffeoyl-CoA 3-O-methyltransferase gene family in jute: Genome-wide identification, evolutionary progression and transcript profiling under different quandaries.jpeg

    No full text
    Jute (Corchorus sp.), is a versatile, naturally occurring, biodegradable material that holds the promising possibility of diminishing the extensive use of plastic bags. One of the major components of the cell wall, lignin plays both positive and negative roles in fiber fineness and quality. Although it gives mechanical strength to plants, an excess amount of it is responsible for the diminution of fiber quality. Among various gene families involved in the lignin biosynthesis, Caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) is the most significant and has remained mostly unexplored. In this study, an extensive in-silico characterization of the CCoAOMT gene family was carried out in two jute species (C. capsularis L. and C. olitoroius L.) by analyzing their structural, functional, molecular and evolutionary characteristics. A total of 6 CCoAOMT gene members were identified in each of the two species using published reference genomes. These two jute species showed high syntenic conservation and the identified CCoAOMT genes formed four clusters in the phylogenetic tree. Histochemical assay of lignin in both jute species could shed light on the deposition pattern in stems and how it changes in response to abiotic stresses. Furthermore, expression profiling using qPCR showed considerable alteration of CCoAOMT transcripts under various abiotic stresses and hormonal treatment. This study will lay a base for further analysis and exploration of target candidates for overexpression of gene silencing using modern biotechnological techniques to enhance the quality of this economically important fiber crop.</p

    Is it human or animal?:The origin of pathogenic e. coli in the drinking water of a low-income urban community in bangladesh

    No full text
    This study aimed to investigate the origin of diverse pathotypes of E. coli, isolated from communal water sources and from the actual drinking water vessel at the point-of-drinking inside households in a low-income urban community in Arichpur, Dhaka, Bangladesh, using a polymerase chain reaction (PCR). Forty-six percent (57/125, CI 95%: 41−58) of the isolates in the point-of-drinking water and 53% (55/103, CI 95%: 45−64) of the isolates in the source water were diarrheagenic E. coli. Among the pathotypes, enterotoxigenic E. coli (ETEC) was the most common, 81% (46/57) of ETEC was found in the point-of-drinking water and 87% (48/55) was found in the communal source water. Phylogenetic group B1, which is predominant in animals, was the most frequently found isolate in both the point-of-drinking water (50%, 91/181) and in the source (50%, 89/180) water. The phylogenetic subgroup B23, usually of human origin, was more common in the point-of-drinking water (65%, 13/20) than in the source water (35%, 7/20). Our findings suggest that non-human mammals and birds played a vital role in fecal contamination for both the source and point-of-drinking water. Addressing human sanitation without a consideration of fecal contamination from livestock sources will not be enough to prevent drinking-water contamination and thus will persist as a greater contributor to diarrheal pathogens

    Synthesis and characterization of heavy metal-based hydroxyapatite for batch adsorption of turquoise blue dye: equilibrium, kinetic, and thermodynamic studies

    No full text
    In this study, different metal hydroxyapatite (HAP) nanoparticles were synthesized at a laboratory scale. All the methods used were very economical because all reagents used in this work were cheap and easily available in laboratories. The synthesized products were characterized by X-ray diffractometer (XRD), Brunauer–Emmett–Teller and Barrett–Joyner–Halenda, scanning electron microscopy, and Fourier transform infrared spectroscopy analysis to confirm the synthesis of respective products by ensuring the presence of phosphate and hydroxyl functional groups. These metal HAP nanoparticles were applied in water treatment applications as adsorbents for the elimination of turquoise blue dye from the aqueous solution. Batch experiments were performed, and all effective parameters were optimized. Their optimized values were as follows: pH = 8, dosage of adsorbent = 0.05 g, contact time = 75 min, temperature = 30 °C, and dye concentration = 75 ppm. The order of adsorption capacity of four different metal HAP products was determined as calcium-HAP (Ca-HAP) > lead-HAP (Pb-HAP) > strontium-HAP (Sr-HAP) > barium-HAP (Ba-HAP). Ca-HAP, Ba-HAP, Sr-HAP, and Pb-HAP have the highest concentration of 0.5 N, giving 54–69.29% desorption. Moreover, the effect of surfactants and electrolytes was also studied. Langmuir isotherm and pseudo-second-order kinetic model were best fitted for turquoise blue dye adsorption. The reaction was exothermic and spontaneous in nature. HIGHLIGHTS Synthesis of nano metal hydroxyapatite (HAP) by the wet precipitation method.; Applications of HAP as a useful material in turquoise blue dye adsorption.; The order of adsorption capacity of four different metal HAP products was determined as Ca-HAP > Pb-HAP > Sr-HAP > Ba-HAP.; The Langmuir model and pseudo-second-order kinetic model were best fitted.
    corecore