84 research outputs found

    Antibody-Mediated Rejection: An Evolving Entity in Heart Transplantation

    Get PDF
    Antibody-mediated rejection (AMR) is gaining increasing recognition as a major complication after heart transplantation, posing a significant risk for allograft failure, cardiac allograft vasculopathy, and poor survival. AMR results from activation of the humoral immune arm and the production of donor-specific antibodies (DSA) that bind to the cardiac allograft causing myocardial injury predominantly through complement activation. The diagnosis of AMR has evolved from a clinical diagnosis involving allograft dysfunction and the presence of DSA to a primarily pathologic diagnosis based on histopathology and immunopathology. Treatment for AMR is multifaceted, targeting inhibition of the humoral immune system at different levels with emerging agents including proteasome and complement inhibitors showing particular promise. While there have been significant advances in our current understanding of the pathogenesis, diagnosis, and treatment of AMR, further research is required to determine optimal diagnostic tools, therapeutic agents, and timing of treatment

    Time Course and Cellular Localization of SARS-CoV Nucleoprotein and RNA in Lungs from Fatal Cases of SARS

    Get PDF
    BACKGROUND: Cellular localization of severe acute respiratory syndrome coronavirus (SARS-CoV) in the lungs of patients with SARS is important in confirming the etiological association of the virus with disease as well as in understanding the pathogenesis of the disease. To our knowledge, there have been no comprehensive studies investigating viral infection at the cellular level in humans. METHODS AND FINDINGS: We collected the largest series of fatal cases of SARS with autopsy material to date by merging the pathological material from two regions involved in the 2003 worldwide SARS outbreak in Hong Kong, China, and Toronto, Canada. We developed a monoclonal antibody against the SARS-CoV nucleoprotein and used it together with in situ hybridization (ISH) to analyze the autopsy lung tissues of 32 patients with SARS from Hong Kong and Toronto. We compared the results of these assays with the pulmonary pathologies and the clinical course of illness for each patient. SARS-CoV nucleoprotein and RNA were detected by immunohistochemistry and ISH, respectively, primarily in alveolar pneumocytes and, less frequently, in macrophages. Such localization was detected in four of the seven patients who died within two weeks of illness onset, and in none of the 25 patients who died later than two weeks after symptom onset. CONCLUSIONS: The pulmonary alveolar epithelium is the chief target of SARS-CoV, with macrophages infected subsequently. Viral replication appears to be limited to the first two weeks after symptom onset, with little evidence of continued widespread replication after this period. If antiviral therapy is considered for future treatment, it should be focused on this two-week period of acute clinical disease

    Severe Acute Respiratory Syndrome–associated Coronavirus in Lung Tissue

    Get PDF
    Efforts to contain severe acute respiratory syndrome (SARS) have been limited by the lack of a standardized, sensitive, and specific test for SARS-associated coronavirus (CoV). We used a standardized reverse transcription-polymerase chain reaction assay to detect SARS-CoV in lung samples obtained from well-characterized patients who died of SARS and from those who died of other reasons. SARS-CoV was detected in all 22 postmortem lung tissues (to 109 viral copies/g) from 11 patients with probable SARS but was not detected in any of the 23 lung control samples (sample analysis was blinded). The sensitivity and specificity (95% confidence interval) were 100% (84.6% to 100%) and 100% (85.1% to 100%), respectively. Viral loads were significantly associated with a shorter course of illness but not with the use of ribavirin or steroids. CoV was consistently identified in the lungs of all patients who died of SARS but not in control patients, supporting a primary role for CoV in deaths

    Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association for European Cardiovascular Pathology: I. Inflammatory diseases

    Get PDF
    Abstract Inflammatory diseases of the aorta include routine atherosclerosis, aortitis, periaortitis, and atherosclerosis with excessive inflammatory responses, such as inflammatory atherosclerotic aneurysms. The nomenclature and histologic features of these disorders are reviewed and discussed. In addition, diagnostic criteria are provided to distinguish between these disorders in surgical pathology specimens. An initial classification scheme is provided for aortitis and periaortitis based on the pattern of the inflammatory infiltrate: granulomatous/giant cell pattern, lymphoplasmacytic pattern, mixed inflammatory pattern, and the suppurative pattern. These inflammatory patterns are discussed in relation to specific systemic diseases including giant cell arteritis, Takayasu arteritis, granulomatosis with polyangiitis (Wegener's), rheumatoid arthritis, sarcoidosis, ankylosing spondylitis, Cogan syndrome, Behcet's disease, relapsing polychondritis, syphilitic aortitis, and bacterial and fungal infections

    The Failure Modes of Biological Prosthetic Heart Valves

    No full text

    Canada's pathology

    No full text
    corecore