19 research outputs found

    Retransformation of a male sterile barnase line with the barstar gene as an efficient alternative method to identify male sterile-restorer combinations for heterosis breeding

    Get PDF
    We report in this study, an improved method for identifying male sterile-restorer combinations using the barnase-barstar system of pollination control for heterosis breeding in crop plants, as an alternative to the conventional line × tester cross method. In this strategy, a transgenic male sterile barnase line was retransformed with appropriate barstar constructs. Double transformants carrying both the barnase and barstar genes were identified and screened for their male fertility status. Using this strategy, 66-90% of fertile retransformants (restored events) were obtained in Brassica juncea using two different barstar constructs. Restored events were analysed for their pollen viability and copy number of the barstar gene. Around 90% of the restored events showed high pollen viability and ~30% contained single copy integrations of the barstar gene. These observations were significantly different from those made in our earlier studies using line (barnase) × tester (barstar) crosses, wherein only two viable male sterile–restorer combinations were identified by screening 88 different cross-combinations. The retransformation strategy not only generated several independent restorers for a given male sterile line from a single transformation experiment but also identified potential restorers in the T0 generation itself leading to significant savings in time, cost and labour. Single copy restored plants with high pollen viability were selfed to segregate male sterile (barnase) and restorer (barstar) lines in the T1 progeny which could subsequently be diversified into appropriate combiners for heterosis breeding. This strategy will be particularly useful for crop plants where poor transformation frequencies and/or lengthy transformation protocols are a major limitation

    Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes

    Get PDF
    Background: Extensive mapping efforts are currently underway for the establishment of comparative genomics between the model plant, Arabidopsis thaliana and various Brassica species. Most of these studies have deployed RFLP markers, the use of which is a laborious and time-consuming process. We therefore tested the efficacy of PCR-based Intron Polymorphism (IP) markers to analyze genome-wide synteny between the oilseed crop, Brassica juncea (AABB genome) and A. thaliana and analyzed the arrangement of 24 (previously described) genomic block segments in the A, B and C Brassica genomes to study the evolutionary events contributing to karyotype variations in the three diploid Brassica genomes. Results: IP markers were highly efficient and generated easily discernable polymorphisms on agarose gels. Comparative analysis of the segmental organization of the A and B genomes of B. juncea (present study) with the A and B genomes of B. napus and B. nigra respectively (described earlier), revealed a high degree of colinearity suggesting minimal macro-level changes after polyploidization. The ancestral block arrangements that remained unaltered during evolution and the karyotype rearrangements that originated in the Oleracea lineage after its divergence from Rapa lineage were identified. Genomic rearrangements leading to the gain or loss of one chromosome each between the A-B and A-C lineages were deciphered. Complete homoeology in terms of block organization was found between three linkage groups (LG) each for the A-B and A-C genomes. Based on the homoeology shared between the A, B and C genomes, a new nomenclature for the B genome LGs was assigned to establish uniformity in the international Brassica LG nomenclature code. Conclusion: IP markers were highly effective in generating comparative relationships between Arabidopsis and various Brassica species. Comparative genomics between the three Brassica lineages established the major rearrangements, translocations and fusions pivotal to karyotype diversification between the A, B and C genomes of Brassica species. The inter-relationships established between the Brassica lineages vis-à-vis Arabidopsis would facilitate the identification and isolation of candidate genes contributing to traits of agronomic value in crop Brassicas and the development of unified tools for Brassica genomics

    Comparative mapping of <it>Brassica juncea </it>and <it>Arabidopsis thaliana </it>using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes

    No full text
    Abstract Background Extensive mapping efforts are currently underway for the establishment of comparative genomics between the model plant, Arabidopsis thaliana and various Brassica species. Most of these studies have deployed RFLP markers, the use of which is a laborious and time-consuming process. We therefore tested the efficacy of PCR-based Intron Polymorphism (IP) markers to analyze genome-wide synteny between the oilseed crop, Brassica juncea (AABB genome) and A. thaliana and analyzed the arrangement of 24 (previously described) genomic block segments in the A, B and C Brassica genomes to study the evolutionary events contributing to karyotype variations in the three diploid Brassica genomes. Results IP markers were highly efficient and generated easily discernable polymorphisms on agarose gels. Comparative analysis of the segmental organization of the A and B genomes of B. juncea (present study) with the A and B genomes of B. napus and B. nigra respectively (described earlier), revealed a high degree of colinearity suggesting minimal macro-level changes after polyploidization. The ancestral block arrangements that remained unaltered during evolution and the karyotype rearrangements that originated in the Oleracea lineage after its divergence from Rapa lineage were identified. Genomic rearrangements leading to the gain or loss of one chromosome each between the A-B and A-C lineages were deciphered. Complete homoeology in terms of block organization was found between three linkage groups (LG) each for the A-B and A-C genomes. Based on the homoeology shared between the A, B and C genomes, a new nomenclature for the B genome LGs was assigned to establish uniformity in the international Brassica LG nomenclature code. Conclusion IP markers were highly effective in generating comparative relationships between Arabidopsis and various Brassica species. Comparative genomics between the three Brassica lineages established the major rearrangements, translocations and fusions pivotal to karyotype diversification between the A, B and C genomes of Brassica species. The inter-relationships established between the Brassica lineages vis-à-vis Arabidopsis would facilitate the identification and isolation of candidate genes contributing to traits of agronomic value in crop Brassicas and the development of unified tools for Brassica genomics.</p

    Nano-differential scanning fluorimetry as a tool for the assessment of refolded antibody fragments: a case study for anti-Pfs25 single-chain antibodies

    No full text
    Differential Scanning Fluorimetry (DSF) is a valuable and versatile tool in the field of protein and antibody stability studies, providing valuable insights into their thermal stability, and aiding in the optimization of experimental conditions for various applications. Antibody fragments provide armamentarium for researchers and practitioners across various fields, enabling advancements in medicine, diagnostics, research, and industrial applications. In the present study, single-chain antibodies derived from mAb 4B7 and mAb 1245 were expressed in E. coli, refolded, and checked for their binding with the antigen - Pfs25 (transmission-blocking malaria vaccine candidate). We used nano-DSF as a valuable tool to assess thermal stability, consequently aiding in predicting the correct folding of single-chain antibodies.. Employing nano-DSF as a checkpoint enables the determination of whether to proceed with functional and binding studies on the refolded single-chain antibodies

    A passage through in vitro culture leads to efficient production of marker-free transgenic plants in Brassica juncea using the Cre-loxP system

    No full text
    The Cre-loxP site-specific recombination system was deployed for removal of marker genes from Brassica juncea (Indian mustard). Excision frequencies, monitored by removal of nptII or gfp genes in F1 plants of crosses between LOX and CRE lines, were high in quiescent, differentiated somatic tissues but extremely poor in the meristematic regions (and consequently the germinal cells) thus preventing identification and selection of marker-free transgenic events which are devoid of both the marker gene as well as the cre gene, in F2 progeny. We show that a passage through in vitro culture of F1 leaf explants allows efficient development of marker-free transgenics in the F2 generation addressing current limitations associated with efficient use of the Cre/loxP technology for marker gene removal

    Pathogenesis and Animal Models of Post-Primary (Bronchogenic) Tuberculosis, A Review

    No full text
    Primary and post-primary tuberculosis (TB) are different diseases caused by the same organism. Primary TB produces systemic immunity. Post-primary TB produces cavities to support massive proliferation of organisms for transmission of infection to new hosts from a person with sufficient immunity to prevent systemic infection. Post-primary, also known as bronchogenic, TB begins in humans as asymptomatic bronchial spread of obstructive lobular pneumonia, not as expanding granulomas. Most lesions regress spontaneously. However, some undergo caseation necrosis that is coughed out through the necrotic bronchi to form cavities. Caseous pneumonia that is not expelled through the bronchi is retained to become the focus of fibrocaseous disease. No animal reproduces this entire process. However, it appears that many mammals utilize similar mechanisms, but fail to coordinate them as do humans. Understanding this makes it possible to use human tuberculous lung sections to guide manipulation of animals to produce models of particular human lesions. For example, slowly progressive and reactivation TB in mice resemble developing human bronchogenic TB. Similarly, bronchogenic TB and cavities resembling those in humans can be induced by bronchial infection of sensitized rabbits. Granulomas in guinea pigs have characteristics of both primary and post primary TB. Mice can be induced to produce a spectrum of human like caseating granulomas. There is evidence that primates can develop bronchogenic TB. We are optimistic that such models developed by coordinated study of human and animal tissues can be used with modern technologies to finally address long-standing questions about host/parasite relationships in TB, and support development of targeted therapeutics and vaccines

    Refolding and characterization of a diabody against Pfs25, a vaccine candidate of Plasmodium falciparum

    No full text
    Pfs25, a vaccine candidate, expressed on the surface of the malarial parasite, plays an important role in the development of Plasmodium falciparum. 1269, a monoclonal antibody targeting the epidermal growth factor-like domain 1 and epidermal growth factor-like domain 3 of Pfs25, blocks the transmission of parasites in mosquitoes. In this study, we refolded 1269-Db, a dimeric antibody fragment referred as diabody, designed from 1269, with a yield of 3 mg/litre of bacterial culture. Structural integrity of the protein was validated with thermal stability, disulphide bond analysis and glutaraldehyde crosslinking experiments. To evaluate the functionality of 1269-Db, recombinant monomeric MBP-Pfs25 was produced from bacteria. Qualitative binding assays demonstrated that 1269-Db recognized the epitopes on Pfs25 in its native, but not the denatured state. An apparent KD of 2.6 nM was determined for 1269-Db with monomeric MBP-Pfs25, using isothermal titration calorimetry. 1269-Db recognized the periphery of zygotes/ookinetes, demonstrating recognition of Pfs25, expressed on the surface of the parasite. As the established refolding method resulted in a functional diabody, the optimized method pipeline for 1269-Db can potentially facilitate engineering of antibody fragments with desired properties
    corecore