46 research outputs found

    The Mycoplasma hyorhinis genome displays differential chromatin accessibility

    Get PDF
    Whilst the regulation of chromatin accessibility and its effect on gene expression have been well studied in eukaryotic species, the role of chromatin dynamics and 3D organisation in genome reduced bacteria remains poorly understood [1,2]. In this study we profiled the accessibility of the Mycoplasma hyorhinis genome, these data were collected fortuitously as part of an experiment where ATAC-Seq was conducted on mycoplasma, contaminated mammalian cells. We found a differential and highly reproducible chromatin accessibility landscape, with regions of increased accessibility corresponding to genes important for the bacteria's life cycle and infectivity. Furthermore, accessibility in general correlated with transcriptionally active genes as profiled by RNA-Seq, but peaks of high accessibility were also seen in non-coding and intergenic regions, which could contribute to the topological organisation of the genome. However, changes in transcription induced by starvation or application of the RNA polymerase inhibitor rifampicin did not themselves change the accessibility profile, which confirms that the differential accessibility is inherently a property of the genome, and not a consequence of its function. These results together show that differential chromatin accessibility is a key feature of the regulation of gene expression in bacteria

    The regulation of circadian entrainment in mice by the adenosine the A2A/A1 receptor antagonist CT1500

    Get PDF
    Circadian entrainment in mice relies primarily on photic cues that trigger the transcription of the core clock genes Period1/2 in the suprachiasmatic nucleus (SCN), thus aligning the phase of the clock with the dawn/dusk cycle. It has been shown previously that this pathway is directly regulated by adenosine signalling and that adenosine A2A/A1 receptor antagonists can both enhance photic entrainment and phase shift circadian rhythms of wheel-running behaviour in mice. In this study, we tested the ability of CT1500, a clinically safe adenosine A2A/A1 receptor antagonist to effect circadian entrainment. We show that CT1500 lengthens circadian period in SCN ex vivo preparations. Furthermore, we show in vivo that a single dose of CT1500 enhances re-entrainment to a shifted light dark cycle in a dose-dependent manner in mice and also phase shifts the circadian clock under constant dark with a clear time-of-day related pattern. The phase response curve shows CT1500 causes phase advances during the day and phase delays at dusk. Finally, we show that daily timed administration of CT1500 can entrain the circadian clock to a 24 h rhythm in free-running mice. Collectively, these data support the use of CT1500 in the treatment of disorders of circadian entrainment

    Inhibition of salt inducible kinases reduces rhythmic HIV-1 replication and reactivation from latency

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1) causes a major burden on global health, and eradication of latent virus infection is one of the biggest challenges in the field. The circadian clock is an endogenous timing system that oscillates with a ~24 h period regulating multiple physiological processes and cellular functions, and we recently reported that the cell intrinsic clock regulates rhythmic HIV-1 replication. Salt inducible kinases (SIK) contribute to circadian regulatory networks, however, there is limited evidence for SIKs regulating HIV-1 infection. Here, we show that pharmacological inhibition of SIKs perturbed the cellular clock and reduced rhythmic HIV-1 replication in circadian synchronised cells. Further, SIK inhibitors or genetic silencing of Sik expression inhibited viral replication in primary cells and in a latency model, respectively. Overall, this study demonstrates a role for salt inducible kinases in regulating HIV-1 replication and latency reactivation, which can provide innovative routes to better understand and target latent HIV-1 infection

    Sleep and circadian rhythm disruption alters the lung transcriptome to predispose to viral infection

    Get PDF
    Sleep and circadian rhythm disruption (SCRD), as encountered during shift work, increases the risk of respiratory viral infection including SARS-CoV-2. However, the mechanism(s) underpinning higher rates of respiratory viral infection following SCRD remain poorly characterised. To address this, we investigated the effects of acute sleep deprivation on the mouse lung transcriptome. Here we show that sleep deprivation profoundly alters the transcriptional landscape of the lung, causing the suppression of both innate and adaptive immune systems, disrupting the circadian clock, and activating genes implicated in SARS-CoV-2 replication, thereby generating a lung environment that could promote viral infection and associated disease pathogenesis. Our study provides a mechanistic explanation of how SCRD increases the risk of respiratory viral infections including SARS-CoV-2 and highlights possible therapeutic avenues for the prevention and treatment of respiratory viral infection

    Patient fibroblast circadian rhythms predict lithium sensitivity in bipolar disorder.

    Get PDF
    Bipolar disorder is a chronic neuropsychiatric condition associated with mood instability, where patients present significant sleep and circadian rhythm abnormalities. Currently, the pathophysiology of bipolar disorder remains elusive, but treatment with lithium continues as the benchmark pharmacotherapy, functioning as a potent mood stabilizer in most, but not all patients. Lithium is well documented to induce period lengthening and amplitude enhancement of the circadian clock. Based on this, we sought to investigate whether lithium differentially impacts circadian rhythms in bipolar patient cell lines and crucially if lithium's effect on the clock is fundamental to its mood-stabilizing effects. We analyzed the circadian rhythms of bipolar patient-derived fibroblasts (n = 39) and their responses to lithium and three further chronomodulators. Here we show, relative to controls (n = 23), patients exhibited a wider distribution of circadian period (p < 0.05), and that patients with longer periods were medicated with a wider range of drugs, suggesting lower effectiveness of lithium. In agreement, patient fibroblasts with longer periods displayed muted circadian responses to lithium as well as to other chronomodulators that phenocopy lithium. These results show that lithium differentially impacts the circadian system in a patient-specific manner and its effect is dependent on the patient's circadian phenotype. We also found that lithium-induced behavioral changes in mice were phenocopied by modulation of the circadian system with drugs that target the clock, and that a dysfunctional clock ablates this response. Thus, chronomodulatory compounds offer a promising route to a novel treatment paradigm. These findings, upon larger-scale validation, could facilitate the implementation of a personalized approach for mood stabilization

    Adenosine integrates light and sleep signalling for the regulation of circadian timing in mice

    Get PDF
    Abstract: The accumulation of adenosine is strongly correlated with the need for sleep and the detection of sleep pressure is antagonised by caffeine. Caffeine also affects the circadian timing system directly and independently of sleep physiology, but how caffeine mediates these effects upon the circadian clock is unclear. Here we identify an adenosine-based regulatory mechanism that allows sleep and circadian processes to interact for the optimisation of sleep/wake timing in mice. Adenosine encodes sleep history and this signal modulates circadian entrainment by light. Pharmacological and genetic approaches demonstrate that adenosine acts upon the circadian clockwork via adenosine A1/A2A receptor signalling through the activation of the Ca2+ -ERK-AP-1 and CREB/CRTC1-CRE pathways to regulate the clock genes Per1 and Per2. We show that these signalling pathways converge upon and inhibit the same pathways activated by light. Thus, circadian entrainment by light is systematically modulated on a daily basis by sleep history. These findings contribute to our understanding of how adenosine integrates signalling from both light and sleep to regulate circadian timing in mice

    Dystrophin regulates peripheral circadian SRF signalling

    Get PDF
    Dystrophin is a sarcolemmal protein essential for muscle contraction and maintenance, absence of which leads to the devastating muscle wasting disease Duchenne muscular dystrophy (DMD)[1, 2]. Dystrophin has an actin-binding domain [3–5], which specifically binds and stabilises filamentous (F)-actin[6], an integral component of the RhoA-actin-serum response factor (SRF)-pathway[7]. The RhoA-actin-SRF-pathway plays an essential role in circadian signalling whereby the hypothalamic suprachiasmatic nucleus, transmits systemic cues to peripheral tissues, activating SRF and transcription of clock target genes[8, 9]. Given dystrophin binds F-actin and disturbed SRF-signalling disrupts clock entrainment, we hypothesised that dystrophin loss causes circadian deficits. Here we show for the first time alterations in the RhoA-actin-SRF-signalling-pathway, in both dystrophin-deficient myotubes and dystrophic mouse models. Specifically, we demonstrate reduced F/G-actin ratios and nuclear MRTF, dysregulation of core clock and downstream target-genes, and down-regulation of key circadian genes in muscle biopsies from DMD patients harbouring an array of mutations. Further, disrupted circadian locomotor behaviour was observed in dystrophic mice indicative of disrupted SCN signalling, and indeed dystrophin protein was absent in the SCN of dystrophic animals. Dystrophin is thus a critically important component of the RhoA-actin-SRF-pathway and a novel mediator of circadian signalling in peripheral tissues, loss of which leads to circadian dysregulation

    The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an AT Motif-Driven Axis

    Get PDF
    SummaryWe identified a dominant missense mutation in the SCN transcription factor Zfhx3, termed short circuit (Zfhx3Sci), which accelerates circadian locomotor rhythms in mice. ZFHX3 regulates transcription via direct interaction with predicted AT motifs in target genes. The mutant protein has a decreased ability to activate consensus AT motifs in vitro. Using RNA sequencing, we found minimal effects on core clock genes in Zfhx3Sci/+ SCN, whereas the expression of neuropeptides critical for SCN intercellular signaling was significantly disturbed. Moreover, mutant ZFHX3 had a decreased ability to activate AT motifs in the promoters of these neuropeptide genes. Lentiviral transduction of SCN slices showed that the ZFHX3-mediated activation of AT motifs is circadian, with decreased amplitude and robustness of these oscillations in Zfhx3Sci/+ SCN slices. In conclusion, by cloning Zfhx3Sci, we have uncovered a circadian transcriptional axis that determines the period and robustness of behavioral and SCN molecular rhythms

    The Regulatory Factor ZFHX3 Modifies Circadian Function in SCN via an at Motif-Driven Axis

    Get PDF
    We identified a dominant missense mutation in the SCN transcription factor Zfhx3, termed short circuit (Zfhx3Sci), which accelerates circadian locomotor rhythms in mice. ZFHX3 regulates transcription via direct interaction with predicted AT motifs in target genes. The mutant protein has a decreased ability to activate consensus AT motifs in vitro. Using RNA sequencing, we found minimal effects on core clock genes in Zfhx3Sci/+ SCN, whereas the expression of neuropeptides critical for SCN intercellular signaling was significantly disturbed. Moreover, mutant ZFHX3 had a decreased ability to activate AT motifs in the promoters of these neuropeptide genes. Lentiviral transduction of SCN slices showed that the ZFHX3-mediated activation of AT motifs is circadian, with decreased amplitude and robustness of these oscillations in Zfhx3Sci/+ SCN slices. In conclusion, by cloning Zfhx3Sci, we have uncovered a circadian transcriptional axis that determines the period and robustness of behavioral and SCN molecular rhythms
    corecore