90 research outputs found

    bb-Coloring Parameterized by Pathwidth is {XNLP}-complete

    Get PDF
    We show that the bb-Coloring problem is complete for the class XNLP whenparameterized by the pathwidth of the input graph. Besides determining theprecise parameterized complexity of this problem, this implies that b-Coloringparameterized by pathwidth is W[t]W[t]-hard for all tt, and resolves theparameterized complexity of bb-Coloring parameterized by treewidth.<br

    Fixed-Parameter Tractability of Directed Multicut with Three Terminal Pairs Parameterized by the Size of the Cutset: Twin-width Meets Flow-Augmentation

    Get PDF
    We show fixed-parameter tractability of the Directed Multicut problem withthree terminal pairs (with a randomized algorithm). This problem, given adirected graph GG, pairs of vertices (called terminals) (s1,t1)(s_1,t_1),(s2,t2)(s_2,t_2), and (s3,t3)(s_3,t_3), and an integer kk, asks to find a set of at mostkk non-terminal vertices in GG that intersect all s1t1s_1t_1-paths, alls2t2s_2t_2-paths, and all s3t3s_3t_3-paths. The parameterized complexity of thiscase has been open since Chitnis, Cygan, Hajiaghayi, and Marx provedfixed-parameter tractability of the 2-terminal-pairs case at SODA 2012, andPilipczuk and Wahlstr\"{o}m proved the W[1]-hardness of the 4-terminal-pairscase at SODA 2016. On the technical side, we use two recent developments in parameterizedalgorithms. Using the technique of directed flow-augmentation [Kim, Kratsch,Pilipczuk, Wahlstr\"{o}m, STOC 2022] we cast the problem as a CSP problem withfew variables and constraints over a large ordered domain.We observe that thisproblem can be in turn encoded as an FO model-checking task over a structureconsisting of a few 0-1 matrices. We look at this problem through the lenses oftwin-width, a recently introduced structural parameter [Bonnet, Kim,Thomass\'{e}, Watrigant, FOCS 2020]: By a recent characterization [Bonnet,Giocanti, Ossona de Mendes, Simon, Thomass\'{e}, Toru\'{n}czyk, STOC 2022] thesaid FO model-checking task can be done in FPT time if the said matrices havebounded grid rank. To complete the proof, we show an irrelevant vertex rule: Ifany of the matrices in the said encoding has a large grid minor, a vertexcorresponding to the ``middle'' box in the grid minor can be proclaimedirrelevant -- not contained in the sought solution -- and thus reduced.<br

    Correlated Prompt Fission Data in Transport Simulations

    Full text link
    Detailed information on the fission process can be inferred from the observation, modeling and theoretical understanding of prompt fission neutron and γ\gamma-ray~observables. Beyond simple average quantities, the study of distributions and correlations in prompt data, e.g., multiplicity-dependent neutron and \gray~spectra, angular distributions of the emitted particles, nn-nn, nn-γ\gamma, and γ\gamma-γ\gamma~correlations, can place stringent constraints on fission models and parameters that would otherwise be free to be tuned separately to represent individual fission observables. The FREYA~and CGMF~codes have been developed to follow the sequential emissions of prompt neutrons and γ\gamma-rays~from the initial excited fission fragments produced right after scission. Both codes implement Monte Carlo techniques to sample initial fission fragment configurations in mass, charge and kinetic energy and sample probabilities of neutron and γ\gamma~emission at each stage of the decay. This approach naturally leads to using simple but powerful statistical techniques to infer distributions and correlations among many observables and model parameters. The comparison of model calculations with experimental data provides a rich arena for testing various nuclear physics models such as those related to the nuclear structure and level densities of neutron-rich nuclei, the γ\gamma-ray~strength functions of dipole and quadrupole transitions, the mechanism for dividing the excitation energy between the two nascent fragments near scission, and the mechanisms behind the production of angular momentum in the fragments, etc. Beyond the obvious interest from a fundamental physics point of view, such studies are also important for addressing data needs in various nuclear applications. (See text for full abstract.)Comment: 39 pages, 57 figure files, published in Eur. Phys. J. A, reference added this versio

    A new measurement of antineutrino oscillation with the full detector configuration at Daya Bay

    Full text link
    We report a new measurement of electron antineutrino disappearance using the fully-constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×\times105^5 GWth_{\rm th}-ton-days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six 241^{241}Am-13^{13}C radioactive calibration sources reduced the background by a factor of two for the detectors in the experimental hall furthest from the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of sin22θ13\sin^{2}2\theta_{13} and Δmee2|\Delta m^2_{ee}| were halved as a result of these improvements. Analysis of the relative antineutrino rates and energy spectra between detectors gave sin22θ13=0.084±0.005\sin^{2}2\theta_{13} = 0.084\pm0.005 and Δmee2=(2.42±0.11)×103|\Delta m^{2}_{ee}|= (2.42\pm0.11) \times 10^{-3} eV2^2 in the three-neutrino framework.Comment: Updated to match final published versio

    New measurement of θ13\theta_{13} via neutron capture on hydrogen at Daya Bay

    Full text link
    This article reports an improved independent measurement of neutrino mixing angle θ13\theta_{13} at the Daya Bay Reactor Neutrino Experiment. Electron antineutrinos were identified by inverse β\beta-decays with the emitted neutron captured by hydrogen, yielding a data-set with principally distinct uncertainties from that with neutrons captured by gadolinium. With the final two of eight antineutrino detectors installed, this study used 621 days of data including the previously reported 217-day data set with six detectors. The dominant statistical uncertainty was reduced by 49%. Intensive studies of the cosmogenic muon-induced 9^9Li and fast neutron backgrounds and the neutron-capture energy selection efficiency, resulted in a reduction of the systematic uncertainty by 26%. The deficit in the detected number of antineutrinos at the far detectors relative to the expected number based on the near detectors yielded sin22θ13=0.071±0.011\sin^22\theta_{13} = 0.071 \pm 0.011 in the three-neutrino-oscillation framework. The combination of this result with the gadolinium-capture result is also reported.Comment: 26 pages, 23 figure
    corecore