244 research outputs found

    Short-Term Dissolved Organic Carbon Dynamics Reflect Tidal, Water Management, and Precipitation Patterns in a Subtropical Estuary

    Get PDF
    Estuaries significantly impact the global carbon cycle by regulating the exchange of organic matter, primarily in the form of dissolved organic carbon (DOC), between terrestrial and marine carbon pools. Estuarine DOC dynamics are complex as tides and other hydrological and climatic drivers can affect carbon fluxes on short and long time scales. While estuarine and coastal DOC dynamics have been well-studied, variations on short time scales are less well-constrained. Recent advancements in sonde technology enable autonomous in situ collection of high frequency DOC data using fluorescent dissolved organic matter (FDOM) as a proxy, dramatically improving our capacity to characterize rapid changes in DOC, even in remote ecosystems. This study utilizes high-frequency FDOM measurements to untangle rapid and complex hydrologic drivers of DOC in the Shark River estuary, the main drainage of Everglades National Park, Florida. Non-conservative mixing of FDOM along the salinity gradient suggested mangrove inputs accounted for 6% of the total DOC pool. Average changes in FDOM concentrations through individual tidal cycles ranged from less than 10% to greater than 50% and multi-day trends \u3e100% change in FDOM concentration were observed. Salinity and water level both inversely correlated to FDOM at sub-hourly and daily resolutions, while freshwater controls via precipitation and water management were observed at diel to monthly time-scales. In particular, the role of water management in rapidly shifting estuarine salinity gradients and DOC export regimes at sub-weekly time-scales was evident. Additionally, sub-hourly spikes in ebb tide FDOM indicated rapid exchange of DOC between mangrove sediments and the river channel. DOC fluxes calculated from high-resolution FDOM measurements were compared to monthly DOC measurements with high-resolution fluxes considerably improving accuracy of fluxes (thereby constraining carbon budgets). This study provides a better understanding of short-term DOC dynamics and associated hydrological drivers and indicates the importance of high-frequency measurements to accurately constrain coastal carbon processes and budgets, particularly in coastal systems increasingly altered by hydrologic restoration and climate change

    Dissolved black carbon in aquatic ecosystems

    Get PDF
    The incomplete combustion of organic molecules produces a chemically diverse suite of pyrogenic residues termed black carbon (BC). The significance of BC cycling on land has long been recognized, and the recognition of dissolved BC (DBC) as a major component of the aquatic carbon cycle is developing rapidly. As we seek a greater understanding of DBC cycling, our interpretation of environmental DBC concentrations and molecular composition should take into account both the formation conditions of charred residues, and the physico‐chemical transformation of DBC that occurs during transit within aquatic systems. We present the current state of knowledge concerning sources, processing, and sinks of DBC in inland, coastal/estuarine, and ocean waters. We feature studies and new methodologies which focus specifically on the aquatic cycling of DBC, explore the relationship between particulate and dissolved BC, and highlight research gaps which should be targeted to advance our current knowledge of DBC biogeochemistry

    Environmental factors controlling the distributions of Botryococcus braunii (A, B and L) biomarkers in a subtropical freshwater wetland

    Get PDF
    Here we report the molecular biomarker co-occurrence of three different races of Botryococcus braunii (B. braunii) in the freshwater wetland ecosystem of the Florida Everglades, USA. Thespecific biomarkers include C32–C34 botryococcenes for race B, C27–C32 n-alkadienes and n-alkatrienes for race A, and lycopadiene for race L. The n-alkadienes and n-alkatrienes were present up to 3.1 and 69.5 µg/g dry weight (dw), while lycopadiene was detected in lower amounts up to 3.0 and 1.5 µg/g dw in periphyton and floc samples, respectively. Nutrient concentrations (P and N) did not significantly correlate with the abundances of these compounds. In contrast, n-alkadienes and n-alkatrienes were present in wider diversity and higher abundance in the floc from slough (deeper water and longer hydroperiod) than ridge (shallower water and shorter hydroperiod) locations. n-Alkadienes, n-alkatrienes, and lycopadiene, showed lower δ13C values from −40.0 to −35.5‰, suggesting that the source organisms B. braunii at least partially utilize recycled CO2 (13C depleted) produced from OM respiration rather than atmospheric CO2 (13C enriched) as the major carbon sources

    Associations Between the Molecular and Optical Properties of Dissolved Organic Matter in the Florida Everglades, a Model Coastal Wetland System

    Get PDF
    Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source, and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial, and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275−295, S350−400, SR, FI, freshness index, and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearman\u27s rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance, and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands
    corecore