383 research outputs found

    Detection of Gravitational Waves from Inflation

    Get PDF
    Recent measurements of temperature fluctuations in the cosmic microwave background (CMB) indicate that the Universe is flat and that large-scale structure grew via gravitational infall from primordial adiabatic perturbations. Both of these observations seem to indicate that we are on the right track with inflation. But what is the new physics responsible for inflation? This question can be answered with observations of the polarization of the CMB. Inflation predicts robustly the existence of a stochastic background of cosmological gravitational waves with an amplitude proportional to the square of the energy scale of inflation. This gravitational-wave background induces a unique signature in the polarization of the CMB. If inflation took place at an energy scale much smaller than that of grand unification, then the signal will be too small to be detectable. However, if inflation had something to do with grand unification or Planck-scale physics, then the signal is conceivably detectable in the optimistic case by the Planck satellite, or if not, then by a dedicated post-Planck CMB polarization experiment. Realistic developments in detector technology as well as a proper scan strategy could produce such a post-Planck experiment that would improve on Planck's sensitivity to the gravitational-wave background by several orders of magnitude in a decade timescale.Comment: 13 page, 4 figures. To appear in the proceedings of DPF2000, Columbus, 9-12 August 2000 and (with slight revisions) in the proceedings of, "Gravitational Waves: A Challenge to Theoretical Astrophysics," Trieste, 5-9 June 200

    Cosmological constraints on pseudo-Nambu-Goldstone bosons

    Get PDF
    Particle physics models with pseudo-Nambu-Goldstone bosons (PNGBs) are characterized by two mass scales: a global spontaneous symmetry breaking scale, f, and a soft (explicit) symmetry breaking scale, Lambda. General model insensitive constraints were studied on this 2-D parameter space arising from the cosmological and astrophysical effects of PNGBs. In particular, constraints were studied arising from vacuum misalignment and thermal production of PNGBs, topological defects, and the cosmological effects of PNGB decay products, as well as astrophysical constraints from stellar PNGB emission. Bounds on the Peccei-Quinn axion scale, 10(exp 10) GeV approx. = or less than f sub pq approx. = or less than 10(exp 10) to 10(exp 12) GeV, emerge as a special case, where the soft breaking scale is fixed at Lambda sub QCD approx. = 100 MeV

    Limits on Neutrino Radiative Decay from Sn1987a

    Get PDF
    We calculate limits on the properties of neutrinos using data from gamma-ray detectors on the Pioneer Venus Orbiter and Solar Max Mission satellites. A massive neutrino decaying in flight from the supernova would produce gamma rays detectable by these instruments. The lack of such a signal allows us to constrain the mass, radiative lifetime, and branching ratio to photons of a massive neutrino species produced in the supernova. Presented at Beyond The Standard Model III, June, 1992.Comment: 5 Pages, 2 Figures (avalable on request). LaTeX, WorldSci.st
    corecore