11 research outputs found

    Matching the photocurrent of perovskite/organic tandem solar modules by varying the cell width

    Full text link
    Photocurrent matching in conventional monolithic tandem solar cells is achieved by choosing semiconductors with complementary absorption spectra and by carefully adjusting the optical properties of the complete top and bottom stacks. However, for thin film photovoltaic technologies at the module level, another design variable significantly alleviates the task of photocurrent matching, namely the cell width, whose modification can be readily realized by the adjustment of the module layout. Herein we demonstrate this concept at the experimental level for the first time for a 2T-mechanically stacked perovskite (FAPbBr3)/organic (PM6:Y6:PCBM) tandem mini-module, an unprecedented approach for these emergent photovoltaic technologies fabricated in an independent manner. An excellent Isc matching is achieved by tuning the cell widths of the perovskite and organic modules to 7.22 mm (PCEPVKT-mod= 6.69%) and 3.19 mm (PCEOPV-mod= 12.46%), respectively, leading to a champion efficiency of 14.94% for the tandem module interconnected in series with an aperture area of 20.25 cm2. Rather than demonstrating high efficiencies at the level of small lab cells, our successful experimental proof-of-concept at the module level proves to be particularly useful to couple devices with non-complementary semiconductors, either in series or in parallel electrical connection, hence overcoming the limitations imposed by the monolithic structure

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Exploring Cooperation between Iran and Turkmenistan for Natural Gas Exporting via Nabucco Pipeline: a Co-operative Game Theory Framework

    No full text
    Following paper explores Iran & Turkmenistan's behavior in exporting natural gas to Europe. Taking this matter these two countries can be a potential of gas exporter to Europe. By using a framework of cooperative game theory, coalition among natural gas exporters and transmitters for the Nabucco Project has been explored. In this paper we answer the question whether the two countries should go to the coalition for exporting gas to Europe or not. Moreover, we calculate bargaining power of these two countries. By having outcomes of following paper one can conclude that the both countries have profits to make the coalition for gas exporting among the Nabucoo project. Iran has more bargaining power than Turkmenistan so Iran can play important and active role to make a coalition to export gas to Europe among the Nabucco project

    cooperation among natural gas exporting of Caspian sea countries to export gas to Europe with respect to environmental requirements in a game theoretic framework

    No full text
    The Followingfollowing paper explores cooperation among Caspian Sea countries for natural gas exporting to Europe. What is puzzling here is whether environmental requirements, in Nabucoo and Trans Caspian Sea gas projects, play an important role in the strategic decision process among three gas-exporting countries in the region: Iran, Azerbayejan and Turkmenistan. using Maskin’s cooperation model, considering externality, , coalition among natural gas exporters and importers for the Projects has been explored In this paper we answer the question whether a coalition should be formed between the three countries to export gas to Europe. We also calculate the bargaining power of these two countries (or three countries?!). The results show that (or all?!) countries have profits to make the coalition for gas exporting among the Nabucoo project. Given the environmental requirements, Trans Caspian is less Economical than Nabucco so Iran can play important and active role to form a coalition to export gas to Europe in the Nabucco project

    Static magnetic field reduces cisplatin resistance via increasing apoptosis pathways and genotoxicity in cancer cell lines

    No full text
    Abstract Cisplatin is a chemotherapy drug widely used in cancer treatment. Alongside its clinical benefits, however, it may inflict intolerable toxicity and other adverse effects on healthy tissues. Due to the limitation of administering a high dose of cisplatin as well as cancer drug resistance, it is necessary to utilize new methods optimizing treatment modalities through both higher therapeutic efficacy and reduced administered doses of radiation and drugs. In this study, sensitive (A2780) and resistant (A2780CP) ovarian carcinoma cells underwent treatment with cisplatin + static magnetic field (SMF). First, the levels of genotoxicity after treatment were evaluated by Comet assay. Then, cell cycle analysis and apoptosis assay were conducted by a flow cytometer. Lastly, the expression levels of genes involved in apoptosis and cellular drug uptake were investigated by PCR. After treating different groups of cells for 24, 48, and 96 h, the co-treatment of SMF and cisplatin as a combination managed to increase the amount of DNA damage in both sensitive and resistant cell lines. A considerable increase in mortality of cells was also observed mostly in the form of apoptosis, which was caused by inhibition of the cell cycle. The combination also increased the expression levels of apoptotic genes, namely P53 and P21; however, it did not have much effect on the expression levels of BCL2. Besides, the levels of CTR1 gene expression increased significantly in the groups receiving the aforementioned combination. Our study suggests that the combination of cisplatin + SMF might have clinical potential which needs further investigations through future studies

    Dietary choline and betaine intake, cardio-metabolic risk factors and prevalence of metabolic syndrome among overweight and obese adults

    No full text
    Abstract Background Choline is an important metabolite involved in phospholipids synthesis, including serum lipids, and is the immediate precursor of betaine. There are numerous studies with inconsistent results that evaluated the association between dietary choline intakes with cardiovascular risk factors. In addition, the association between dietary betaine and choline intakes with cardio-metabolic risk factors is not well studied. In the current study, our aim was to evaluate dietary choline and betaine intakes in the usual diet of obese individuals and to assess its association with serum lipids, blood pressure and glycemic markers among obese individuals. Methods We recruited a total number of 359 obese people aged between 20 and 50 years in the present study. A semi-quantitative food frequency questionnaire (FFQ) was used for dietary assessment; dietary choline and betaine intakes were calculated using the United States Department of Agriculture (USDA) database. National cholesterol education program adult treatment panel (NCEP-ATP)-III criteria was used metabolic syndrome (MetS) definition. Enzymatic methods were used to assess biochemical variables. Body composition was measured with the bioelectrical impedance analysis (BIA) method. Results Higher body mass index (BMI), waist to hip ratio (WHR), fat-free mass (FFM) and basal metabolic rate (BMR) were observed in higher tertiles of dietary choline intake (P  0.05), while in the non-MetS group, SBP, DBP, TG and insulin levels reduced in higher tertiles of dietary betaine and choline (P > 0.05). Conclusion According to our findings, higher dietary intakes of choline and betaine were associated with lower levels of blood pressure and LDL concentrations among obese individuals. Further studies are warranted to confirm the results of the current study

    Breaking 1.7V open circuit voltage in large area transparent perovskite solar cells using bulk and interfaces passivation.

    No full text
    International audienceAbstract Efficient semi-transparent solar cells can trigger the adoption of building integrated photovoltaics. Halide perovskites are particularly suitable in this respect owing to their tunable bandgap. Main drawbacks in the development of transparent perovskite solar cells are the high Voc deficit and the difficulties in depositing thin films over large area substrates, given the low solubility of bromide and chloride precursors. In this work, we develop a 2D and passivation strategies for the high band-gap Br perovskite able to reduce charge recombination and consequently improving the open-circuit voltage. We demonstrate 1cm 2 perovskite solar cells with Voc up to 1.73 V (1.83 eV QFLS) and a PCE of 8.2%. The AVT exceeds 70% by means of a bifacial light management and a record light utilization efficiency of 5.72 is achieved, setting a new standard for transparent photovoltaics. Moreover, we show the high ceiling of our technology towards IoT application due to a bifaciality factor of 87% along with 17% PCE under indoor lighting. Finally, the up-scaling has been demonstrated fabricating 20cm 2 -active area modules with PCE of 7.3% and Voc per cell up to 1.65V

    Highly Efficient Flexible Perovskite Solar Cells on Polyethylene Terephthalate Films via Dual Halide and Low‐Dimensional Interface Engineering for Indoor Photovoltaics

    No full text
    Flexible perovskite solar cells are lightweight, bendable, and applicable to curved surfaces. Polyethylene terephthalate (PET) has become the substrate of choice compared to other plastic substrates like polyethylene naphthalate. PET is not only stable but also much cheaper to manufacture, an important factor for photovoltaics (PV). Herein, highly efficient devices on PET are demonstrated using a dual low-temperature (& LE;100 & DEG;C) approach, first by anion mixing (replacing I with Br) of the lead-containing perovskite composition, increasing bandgap (42% improvement), and then by interfacial engineering with tetrabutylammonium bromide (TBAB) (a further 26% improvement), reaching efficiencies of 28.9% at 200 lx and a record 32.5% at 1000 lx. The TBA(+) cation intercalates into the structure, substituting formamidinium cations at the perovskite/TBAB interface, inducing the formation of large-sized, lower dimensional structures over the 3D perovskite matrix. The resulting PV cell has 1.4 times higher carrier lifetime, one order of magnitude lower leakage currents, and 3 times lower defect densities, suppressing recombination. Importantly, stability (ISOS-D1 protocol) improves by more than double with treatment. Highly efficient and stable cells on PET films enable seamless integration with wearable, portable, smart building, and Internet of Things electronic devices, expanding the reach of indoor applications

    Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. Methods: Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. Findings: In 2021, there were 529 million (95% uncertainty interval [UI] 500-564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8-6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7-9·9]) and, at the regional level, in Oceania (12·3% [11·5-13·0]). Nationally, Qatar had the world's highest age-specific prevalence of diabetes, at 76·1% (73·1-79·5) in individuals aged 75-79 years. Total diabetes prevalence-especially among older adults-primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1-96·8) of diabetes cases and 95·4% (94·9-95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5-71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5-30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22-1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1-17·6) in north Africa and the Middle East and 11·3% (10·8-11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. Interpretation: Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers. Funding: Bill & Melinda Gates Foundation
    corecore