3 research outputs found

    Investigation of continuous-time quantum walk by using Krylov subspace-Lanczos algorithm

    Get PDF
    In papers\cite{js,jsa}, the amplitudes of continuous-time quantum walk on graphs possessing quantum decomposition (QD graphs) have been calculated by a new method based on spectral distribution associated to their adjacency matrix. Here in this paper, it is shown that the continuous-time quantum walk on any arbitrary graph can be investigated by spectral distribution method, simply by using Krylov subspace-Lanczos algorithm to generate orthonormal bases of Hilbert space of quantum walk isomorphic to orthogonal polynomials. Also new type of graphs possessing generalized quantum decomposition have been introduced, where this is achieved simply by relaxing some of the constrains imposed on QD graphs and it is shown that both in QD and GQD graphs, the unit vectors of strata are identical with the orthonormal basis produced by Lanczos algorithm. Moreover, it is shown that probability amplitude of observing walk at a given vertex is proportional to its coefficient in the corresponding unit vector of its stratum, and it can be written in terms of the amplitude of its stratum. Finally the capability of Lanczos-based algorithm for evaluation of walk on arbitrary graphs (GQD or non-QD types), has been tested by calculating the probability amplitudes of quantum walk on some interesting finite (infinite) graph of GQD type and finite (infinite) path graph of non-GQD type, where the asymptotic behavior of the probability amplitudes at infinite limit of number of vertices, are in agreement with those of central limit theorem of Ref.\cite{nko}.Comment: 29 pages, 4 figure

    Evaluation of effective resistances in pseudo-distance-regular resistor networks

    Full text link
    In Refs.[1] and [2], calculation of effective resistances on distance-regular networks was investigated, where in the first paper, the calculation was based on the stratification of the network and Stieltjes function associated with the network, whereas in the latter one a recursive formula for effective resistances was given based on the Christoffel-Darboux identity. In this paper, evaluation of effective resistances on more general networks called pseudo-distance-regular networks [21] or QD type networks \cite{obata} is investigated, where we use the stratification of these networks and show that the effective resistances between a given node such as α\alpha and all of the nodes β\beta belonging to the same stratum with respect to α\alpha (Rαβ(m)R_{\alpha\beta^{(m)}}, β\beta belonging to the mm-th stratum with respect to the α\alpha) are the same. Then, based on the spectral techniques, an analytical formula for effective resistances Rαβ(m)R_{\alpha\beta^{(m)}} such that Lαα−1=Lββ−1L^{-1}_{\alpha\alpha}=L^{-1}_{\beta\beta} (those nodes α\alpha, β\beta of the network such that the network is symmetric with respect to them) is given in terms of the first and second orthogonal polynomials associated with the network, where L−1L^{-1} is the pseudo-inverse of the Laplacian of the network. From the fact that in distance-regular networks, Lαα−1=Lββ−1L^{-1}_{\alpha\alpha}=L^{-1}_{\beta\beta} is satisfied for all nodes α,β\alpha,\beta of the network, the effective resistances Rαβ(m)R_{\alpha\beta^{(m)}} for m=1,2,...,dm=1,2,...,d (dd is diameter of the network which is the same as the number of strata) are calculated directly, by using the given formula.Comment: 30 pages, 7 figure

    Investigation of continuous-time quantum walk by using Krylov subspace-Lanczos algorithm

    No full text
    In papers [Jafarizadehn and Salimi, Ann. Phys. 322, 1005 (2007) and J. Phys. A: Math. Gen. 39, 13295 (2006)], the amplitudes of continuous-time quantum walk (CTQW) on graphs possessing quantum decomposition (QD graphs) have been calculated by a new method based on spectral distribution associated with their adjacency matrix. Here in this paper, it is shown that the CTQW on any arbitrary graph can be investigated by spectral analysis method, simply by using Krylov subspace-Lanczos algorithm to generate orthonormal bases of Hilbert space of quantum walk isomorphic to orthogonal polynomials. Also new type of graphs possessing generalized quantum decomposition (GQD) have been introduced, where this is achieved simply by relaxing some of the constrains imposed on QD graphs and it is shown that both in QD and GQD graphs, the unit vectors of strata are identical with the orthonormal basis produced by Lanczos algorithm. Moreover, it is shown that probability amplitude of observing the walk at a given vertex is proportional to its coefficient in the corresponding unit vector of its stratum, and it can be written in terms of the amplitude of its stratum. The capability of Lanczos-based algorithm for evaluation of CTQW on graphs (GQD or non-QD types), has been tested by calculating the probability amplitudes of quantum walk on some interesting finite (infinite) graph of GQD type and finite (infinite) path graph of non-GQD type, where the asymptotic behavior of the probability amplitudes at the limit of the large number of vertices, are in agreement with those of central limit theorem of [Phys. Rev. E 72, 026113 (2005)]. At the end, some applications of the method such as implementation of quantum search algorithms, calculating the resistance between two nodes in regular networks and applications in solid state and condensed matter physics, have been discussed, where in all of them, the Lanczos algorithm, reduces the Hilbert space to some smaller subspaces and the problem is investigated in the subspace with maximal dimension
    corecore