26 research outputs found

    Experimental and numerical activity on a prototype ejector chiller

    Get PDF

    A study on drug delivery tracing with radiolabeled mesoporous hydroxyapatite nanoparticles conjugated with 2DG/DOX for breast tumor cells

    Get PDF
    Background: Mesoporous nanoparticles have a great potential in targeted therapy approaches due to their ideal properties for encapsulation of various drugs, proteins and also biologically active molecules. Material and methods: We used mesoporous hydroxyapatite (HA) nanoparticles as a drug carrier and developed radiolabeled mesoporous HA containing of 2-deoxy-D-glucose (2DG) and Doxorubicin (DOX) with technetium-99m (99mTc) for imaging in in vitro and in vivo studies. Results: 2DG and DOX in presence of mesoporous HA nanoparticles more reduced the fraction of viable cells in the MDA-MB-231, MCF-7 human and MC4-L2 Balb/c mice breast cancer cells. The radiochemical purity of the nano-2DG-DOX complex with 99mTc was calculated to 96.8%. The results of cellular uptake showed a 44.77% increase in uptake of the [99mTc]-nano-2DG-DOX compared to the complex without nanoparticles (p < 0.001). Conclusion: Radioisotopic imaging demonstrated a high biochemical stability for [99mTc]-nano-2DG-DOX complex. The results demonstrated that [99mTc]-nano-2DG-DOX, may be used as an attractive candidate in cancer imaging and treatment managing.BACKGROUND: Mesoporous nanoparticles have a great potential in targeted therapy approaches due to their ideal properties for encapsulation of various drugs, proteins and also biologically active molecules. MATERIAL AND METHODS: We used mesoporous hydroxyapatite (HA) nanoparticles as a drug carrier and developed ra­diolabeled mesoporous HA containing of 2-deoxy-D-glucose (2DG) and Doxorubicin (DOX) with technetium-99m (99mTc) for imaging in in vitro and in vivo studies. RESULTS: 2DG and DOX in presence of mesoporous HA nanoparticles more reduced the fraction of viable cells in the MDA-MB-231, MCF-7 human and MC4-L2 Balb/c mice breast cancer cells. The radiochemical purity of the nano-2DG-DOX complex with 99mTc was calculated to 96.8%. The results of cellular uptake showed a 44.77% increase in uptake of the [99mTc]- nano-2DG-DOX compared to the complex without nanoparticles (p &lt; 0.001). CONCLUSIONS: Radioisotopic imaging demonstrated a high biochemical stability for [99mTc]-nano-2DG-DOX complex. The results demonstrated that [99mTc]-nano-2DG-DOX, may be used as an attractive candidate in cancer imaging and treatment managing.

    MicroRNA-122 in patients with hepatitis B and hepatitis B virus-associated hepatocellular carcinoma

    Get PDF
    Hepatitis B virus (HBV) infection is known as a serious problem in the domain of public health and approximately 350 million people across the world are affected with this infectious disease. As well, microRNAs are recognized as a type of small non-coding RNAs that can be widely used as a diagnostic biomarker and prognosis method of special diseases. In this respect, microRNA-122 or miR-122 can play a significant role in the pathogenesis of several hepatic diseases. Given the importance of microRNA-122 in the liver as well as its pathology, this study focused on the potential functions of microRNA-122 in pathogenesis, diagnosis, and treatment of HBV infection. In this regard, the findings of previous studies had indicated that expression of microRNA-122 in patients with HBV infection could be significantly deregulated. The results of this study were consistent with the idea that diagnosis and treatment of this infectious disease using microRNA-122 could be an efficient method. Keywords Author Keywords:Hepatitis B virus (HBV); microRNA-122; hepatocellular carcinoma (HCC); biomarker KeyWords Plus:REGION CONFERS RISK; MIRNA-122-BINDING SITE; CIRCULATING MICRORNAS; REGULATORY CIRCUITRY; CELL-PROLIFERATION; VIRAL REPLICATION; DOWN-REGULATION; LIVER-CANCER; MIR-122; EXPRESSIO

    Conjugation of R-Phycoerythrin to a Polyclonal Antibody and F (ab&apos;)2 Fragment of a Polyclonal Antibody by Two Different Methods

    Get PDF
    Abstract R-Phycoerythrin (R-PE), a fluorescent protein from phycobiliprotein family, is isolated from red algae. Conjugation of antibodies to R-PE facilitates multiple fluorescent staining methods. In the present study polyclonal antibodies and polyclonal F(ab&apos;)2 fragment antibodies were conjugated to R-PE by two different methods. The efficiency of the methods was evaluated using Immunocytochemistry (ICC) and Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE). In the first conjugation method, PE was attached to SMCC linker followed by conjugation of antibody to PE-SMCC. In the second method, SH groups were added onto R-PE molecule, while the antibody was attached to SPDP linker. Then, the antibody-SPDP molecule was conjugated to R-PE. Our results showed that the two conjugation methods did not have any abrogative effects on the antibody binding activity

    Corneal epithelium tissue engineering: recent advances in regeneration and replacement of corneal surface

    No full text
    Currently, many corneal diseases are treated by corneal transplantation, artificial corneal implantation or, in severe cases, keratoprosthesis. Owing to the shortage of cornea donors and the risks involved with artificial corneal implants, such as infection transmission, researchers continually seek new approaches for corneal regeneration. Corneal tissue engineering is a promising approach that has attracted much attention from researchers and is focused on regenerative strategies using various biomaterials in combination with different cell types. These constructs should have the ability to mimic the native tissue microenvironment and present suitable optical, mechanical and biological properties. In this article, we review studies that have focused on the current clinical techniques for corneal replacement. We also describe tissue-engineering and cell-based approaches for corneal regeneration
    corecore