143 research outputs found

    Accelerated materials language processing enabled by GPT

    Full text link
    Materials language processing (MLP) is one of the key facilitators of materials science research, as it enables the extraction of structured information from massive materials science literature. Prior works suggested high-performance MLP models for text classification, named entity recognition (NER), and extractive question answering (QA), which require complex model architecture, exhaustive fine-tuning and a large number of human-labelled datasets. In this study, we develop generative pretrained transformer (GPT)-enabled pipelines where the complex architectures of prior MLP models are replaced with strategic designs of prompt engineering. First, we develop a GPT-enabled document classification method for screening relevant documents, achieving comparable accuracy and reliability compared to prior models, with only small dataset. Secondly, for NER task, we design an entity-centric prompts, and learning few-shot of them improved the performance on most of entities in three open datasets. Finally, we develop an GPT-enabled extractive QA model, which provides improved performance and shows the possibility of automatically correcting annotations. While our findings confirm the potential of GPT-enabled MLP models as well as their value in terms of reliability and practicability, our scientific methods and systematic approach are applicable to any materials science domain to accelerate the information extraction of scientific literature

    MatGD: Materials Graph Digitizer

    Full text link
    We have developed MatGD (Material Graph Digitizer), which is a tool for digitizing a data line from scientific graphs. The algorithm behind the tool consists of four steps: (1) identifying graphs within subfigures, (2) separating axes and data sections, (3) discerning the data lines by eliminating irrelevant graph objects and matching with the legend, and (4) data extraction and saving. From the 62,534 papers in the areas of batteries, catalysis, and MOFs, 501,045 figures were mined. Remarkably, our tool showcased performance with over 99% accuracy in legend marker and text detection. Moreover, its capability for data line separation stood at 66%, which is much higher compared to other existing figure mining tools. We believe that this tool will be integral to collecting both past and future data from publications, and these data can be used to train various machine learning models that can enhance material predictions and new materials discovery.Comment: 23 pages, 4 figure

    Invariant subspaces for operators whose spectra are Carathéodory regions

    Get PDF
    AbstractIn this paper it is shown that if an operator T satisfies ‖p(T)‖⩽‖p‖σ(T) for every polynomial p and the polynomially convex hull of σ(T) is a Carathéodory region whose accessible boundary points lie in rectifiable Jordan arcs on its boundary, then T has a nontrivial invariant subspace. As a corollary, it is also shown that if T is a hyponormal operator and the outer boundary of σ(T) has at most finitely many prime ends corresponding to singular points on ∂D and has a tangent at almost every point on each Jordan arc, then T has a nontrivial invariant subspace

    ARM MOTIONS FOR DIFFERENT TARGET POSITIONS DURING TAEKWONDO ROUNDHOUSE KICKS

    Get PDF
    The purpose of this study was to investigate arm motions for five different target positions during Taekwondo roundhouse kicks. Nine Taekwondo experts performed roundhouse kicks at a target. A 3D motion analysis was conducted. One-way repeated ANOVA was used to compare the arm motion among five conditions. This study reveals that a higher kick needs the increased vertical separation of the right and left arm (elbow and wrist) in release phase. For a longer kick at Body level, elbows should be more vertically apart and wrists should be more horizontally apart in the release phase. Both attackers and counter attackers in Taekwondo athletes can use the arm swing characteristics at different target heights and distances

    Online Hyperparameter Meta-Learning with Hypergradient Distillation

    Get PDF
    Many gradient-based meta-learning methods assume a set of parameters that do not participate in inner-optimization, which can be considered as hyperparameters. Although such hyperparameters can be optimized using the existing gradient-based hyperparameter optimization (HO) methods, they suffer from the following issues. Unrolled differentiation methods do not scale well to high-dimensional hyperparameters or horizon length, Implicit Function Theorem (IFT) based methods are restrictive for online optimization, and short horizon approximations suffer from short horizon bias. In this work, we propose a novel HO method that can overcome these limitations, by approximating the second-order term with knowledge distillation. Specifically, we parameterize a single Jacobian-vector product (JVP) for each HO step and minimize the distance from the true second-order term. Our method allows online optimization and also is scalable to the hyperparameter dimension and the horizon length. We demonstrate the effectiveness of our method on two different meta-learning methods and three benchmark datasets

    Do Not Escape From the Manifold: Discovering the Local Coordinates on the Latent Space of GANs

    Full text link
    The discovery of the disentanglement properties of the latent space in GANs motivated a lot of research to find the semantically meaningful directions on it. In this paper, we suggest that the disentanglement property is closely related to the geometry of the latent space. In this regard, we propose an unsupervised method for finding the semantic-factorizing directions on the intermediate latent space of GANs based on the local geometry. Intuitively, our proposed method, called Local Basis, finds the principal variation of the latent space in the neighborhood of the base latent variable. Experimental results show that the local principal variation corresponds to the semantic factorization and traversing along it provides strong robustness to image traversal. Moreover, we suggest an explanation for the limited success in finding the global traversal directions in the latent space, especially W-space of StyleGAN2. We show that W-space is warped globally by comparing the local geometry, discovered from Local Basis, through the metric on Grassmannian Manifold. The global warpage implies that the latent space is not well-aligned globally and therefore the global traversal directions are bound to show limited success on it.Comment: 23 pages, 19 figure

    Censored Sampling of Diffusion Models Using 3 Minutes of Human Feedback

    Full text link
    Diffusion models have recently shown remarkable success in high-quality image generation. Sometimes, however, a pre-trained diffusion model exhibits partial misalignment in the sense that the model can generate good images, but it sometimes outputs undesirable images. If so, we simply need to prevent the generation of the bad images, and we call this task censoring. In this work, we present censored generation with a pre-trained diffusion model using a reward model trained on minimal human feedback. We show that censoring can be accomplished with extreme human feedback efficiency and that labels generated with a mere few minutes of human feedback are sufficient. Code available at: https://github.com/tetrzim/diffusion-human-feedback.Comment: Published in NeurIPS 202

    C-ITS Environment Modeling and Attack Modeling

    Full text link
    As technology advances, cities are evolving into smart cities, with the ability to process large amounts of data and the increasing complexity and diversification of various elements within urban areas. Among the core systems of a smart city is the Cooperative-Intelligent Transport Systems (C-ITS). C-ITS is a system where vehicles provide real-time information to drivers about surrounding traffic conditions, sudden stops, falling objects, and other accident risks through roadside base stations. It consists of road infrastructure, C-ITS centers, and vehicle terminals. However, as smart cities integrate many elements through networks and electronic control, they are susceptible to cybersecurity issues. In the case of cybersecurity problems in C-ITS, there is a significant risk of safety issues arising. This technical document aims to model the C-ITS environment and the services it provides, with the purpose of identifying the attack surface where security incidents could occur in a smart city environment. Subsequently, based on the identified attack surface, the document aims to construct attack scenarios and their respective stages. The document provides a description of the concept of C-ITS, followed by the description of the C-ITS environment model, service model, and attack scenario model defined by us.Comment: in Korean Language, 14 Figures, 15 Page
    • …
    corecore