16 research outputs found

    Eco-friendly Technologies for Physical and Chemical Recycling of PVC-Related Wasteful Resources

    Get PDF
    The aim of this study is to enhance the recycled PVC related material property by formulation technology and develop the recycling product processing technology furthermore develop the chemical recycling technology for last stage of PVC wastes. The formulation technology is composed of pre-treatment (crushing, separation etc.) and post-treatment (material ratio, additives, stabilizer etc.) to enhance the recyclate property. The formulation for recycled PVC by application basis and processing technology is applied to produce the structural product for civil and construction application such as pipe fittings and water drainage cap for environmental waterway. Also chemical recycling technology for end life PVC scrap which causes environmental pollution by incineration or landfill is studied for producing hydrocarbon and hydrogen chloride for VCM

    Solvent: A Framework for Protein Folding

    Full text link
    Consistency and reliability are crucial for conducting AI research. Many famous research fields, such as object detection, have been compared and validated with solid benchmark frameworks. After AlphaFold2, the protein folding task has entered a new phase, and many methods are proposed based on the component of AlphaFold2. The importance of a unified research framework in protein folding contains implementations and benchmarks to consistently and fairly compare various approaches. To achieve this, we present Solvent, an protein folding framework that supports significant components of state-of-the-art models in the manner of off-the-shelf interface Solvent contains different models implemented in a unified codebase and supports training and evaluation for defined models on the same dataset. We benchmark well-known algorithms and their components and provide experiments that give helpful insights into the protein structure modeling field. We hope that Solvent will increase the reliability and consistency of proposed models and gives efficiency in both speed and costs, resulting in acceleration on protein folding modeling research. The code is available at https://github.com/kakaobrain/solvent, and the project will continue to be developed.Comment: preprint, 8page

    Efficacy and safety of rhBMP/β-TCP in alveolar ridge preservation: a multicenter, randomized, open-label, comparative, investigator-blinded clinical trial

    Get PDF
    Abstract Background The aim of this multicenter, randomized, open-label, comparative, investigator-blinded study was to investigate the efficacy and safety of recombinant human bone morphogenetic protein 2 (rhBMP-2) combined with β-TCP (rhBMP-2/β-TCP) in alveolar ridge preservation. Materials and methods Eighty-four subjects from three centers were enrolled in this clinical trial. After tooth extraction, rhBMP-2/β-TCP (n = 41, test group) or β-TCP (n = 43, control group) were grafted to the extraction socket with an absorbable barrier membrane for alveolar ridge preservation. Using computed tomography images obtained immediately after and 12 weeks after surgery, changes in the alveolar bone height and width were analyzed for each group and compared between the two groups. Results Both the test and control groups showed a significant decrease in alveolar bone height in the 12 weeks after surgery (both groups, p < 0.0001). However, the test group exhibited a significantly lower decrease in alveolar bone height than the control group (p = 0.0004). Alveolar bone width also showed significantly less resorption in the test group than in the control group for all extraction socket levels (ESL) (p = 0.0152 for 75% ESL; p < 0.0001 for 50% ESL; p < 0.0001 for 25% ESL). There were no statistically significant differences in the incidence of adverse events between the two groups. No severe adverse events occurred in either group. Conclusions The results of this study suggest that rhBMP-2/β-TCP is a safe graft material that provides a high alveolar bone preservation effect in patients receiving dental extraction. Trial registration Clinicaltrials.gov , NCT02714829 , Registered 22 March 201

    Distributional Prototypical Methods for Reliable Explanation Space Construction

    No full text
    As deep learning has been successfully deployed in diverse applications, there is an ever increasing need to explain its decision. To explain decisions, case-based reasoning has proved to be effective in many areas. The prototype-based explanation is a method that provides an explanation of the model&#x2019;s prediction using the distance between an input and learned prototypes to effectively perform case-based reasoning. However, existing methods are less reliable because distance is not always consistent with human perception. In this study, we construct a latent space which we call an explanationspaceexplanation space with distributional embedding and latent space regularization. This explanation space ensures that similar (in terms of human-interpretable features) images share similar latent representations, and therefore provides a reliable explanation for the consistency between distance-based explanation and human perception. The explanation space also provides additional explanation by transition, allowing the user to understand the factors that affect the distance. Throughout extensive experiments including human evaluation, we have shown that the explanation space provides a more human-understandable explanation

    DDM1-mediated gene body DNA methylation is associated with inducible activation of defense-related genes in Arabidopsis

    Get PDF
    Abstract Background Plants memorize previous pathogen attacks and are “primed” to produce a faster and stronger defense response, which is critical for defense against pathogens. In plants, cytosines in transposons and gene bodies are reported to be frequently methylated. Demethylation of transposons can affect disease resistance by regulating the transcription of nearby genes during defense response, but the role of gene body methylation (GBM) in defense responses remains unclear. Results Here, we find that loss of the chromatin remodeler decrease in DNA methylation 1 (ddm1) synergistically enhances resistance to a biotrophic pathogen under mild chemical priming. DDM1 mediates gene body methylation at a subset of stress-responsive genes with distinct chromatin properties from conventional gene body methylated genes. Decreased gene body methylation in loss of ddm1 mutant is associated with hyperactivation of these gene body methylated genes. Knockout of glyoxysomal protein kinase 1 (gpk1), a hypomethylated gene in ddm1 loss-of-function mutant, impairs priming of defense response to pathogen infection in Arabidopsis. We also find that DDM1-mediated gene body methylation is prone to epigenetic variation among natural Arabidopsis populations, and GPK1 expression is hyperactivated in natural variants with demethylated GPK1. Conclusions Based on our collective results, we propose that DDM1-mediated GBM provides a possible regulatory axis for plants to modulate the inducibility of the immune response
    corecore