2 research outputs found

    Improving Dispersion and Barrier Properties of Polyketone/Graphene Nanoplatelet Composites via Noncovalent Functionalization Using Aminopyrene

    No full text
    A series of polyketone (PK) nanocomposite films with varying content of noncovalently functionalized graphene nanoplatelet with 1-aminopyrene (GNP/APy) is prepared by solution blending with a solvent of hexafluoro-2-propanol. GNP/APy, prepared by a facile method, can effectively induce specific interaction such as hydrogen bonding between the amine functional group of GNP/APy and the carbonyl functional group of the PK matrix. With comparison of GNP and GNP/Py as reference materials, intensive investigation on filler–matrix interaction is achieved. In addition, the dispersion state of the functionalized GNP (f-GNPs; GNP/Py and GNP/APy) in the PK matrix is analyzed by three-dimensional nondestructive X-ray microcomputed tomography, and the increased dispersion state of those fillers results in significant improvement in the water vapor transmission rate (WVTR). The enhancement in WVTR of the PK/GNP/APy nanocomposite film at 1 wt % loading of filler leads to a barrier performance approximately 2 times larger compared to that of PK/GNP nanocomposite film and an approximately 92% reduction in WVTR compared to the case of pristine PK film. We expect that this facile method of graphene functionalization to enhance graphene dispersibility as well as interfacial interaction with the polymer matrix will be widely utilized to expand the potential of graphene materials to barrier film applications

    High-Performance Electroactive Polymer Actuators Based on Ultrathick Ionic Polymer–Metal Composites with Nanodispersed Metal Electrodes

    No full text
    Ionic polymer–metal composites (IPMCs) have been proposed as biomimetic actuators that are operable at low applied voltages. However, the bending strain and generating force of the IPMC actuators have generally exhibited a trade-off relationship, whereas simultaneous enhancement of both the qualities is required for their practical applications. Herein, a significant improvement in both the strain and force of the IPMC actuators is achieved by a facile approach, exploiting thickness-controlled ion-exchange membranes and nanodispersed metal electrodes. To guarantee a large generating force of the IPMC actuators, ultrathick ion-exchange membranes are prepared by stacking pre-extruded Nafion films. Metal electrodes with a nanodispersed structure are formed on the membranes via alcohol-assisted electroless plating, which allows increased capacitance and facilitated ion transport. The resulting actuators exhibit greatly enhanced electromechanical properties, including an approximately four times larger strain and two times larger force compared to those of actuators having the conventional structure. Moreover, the ability to lift 16 coins (a weight of 124 g) has been successfully demonstrated using ultrathick IPMC actuators, which shows great promise in realizing artificial muscles
    corecore