362 research outputs found

    Exploring the landscapes of "computing": digital, neuromorphic, unconventional -- and beyond

    Get PDF
    The acceleration race of digital computing technologies seems to be steering toward impasses -- technological, economical and environmental -- a condition that has spurred research efforts in alternative, "neuromorphic" (brain-like) computing technologies. Furthermore, since decades the idea of exploiting nonlinear physical phenomena "directly" for non-digital computing has been explored under names like "unconventional computing", "natural computing", "physical computing", or "in-materio computing". This has been taking place in niches which are small compared to other sectors of computer science. In this paper I stake out the grounds of how a general concept of "computing" can be developed which comprises digital, neuromorphic, unconventional and possible future "computing" paradigms. The main contribution of this paper is a wide-scope survey of existing formal conceptualizations of "computing". The survey inspects approaches rooted in three different kinds of background mathematics: discrete-symbolic formalisms, probabilistic modeling, and dynamical-systems oriented views. It turns out that different choices of background mathematics lead to decisively different understandings of what "computing" is. Across all of this diversity, a unifying coordinate system for theorizing about "computing" can be distilled. Within these coordinates I locate anchor points for a foundational formal theory of a future computing-engineering discipline that includes, but will reach beyond, digital and neuromorphic computing.Comment: An extended and carefully revised version of this manuscript has now (March 2021) been published as "Toward a generalized theory comprising digital, neuromorphic, and unconventional computing" in the new open-access journal Neuromorphic Computing and Engineerin

    Relative entropy minimizing noisy non-linear neural network to approximate stochastic processes

    Full text link
    A method is provided for designing and training noise-driven recurrent neural networks as models of stochastic processes. The method unifies and generalizes two known separate modeling approaches, Echo State Networks (ESN) and Linear Inverse Modeling (LIM), under the common principle of relative entropy minimization. The power of the new method is demonstrated on a stochastic approximation of the El Nino phenomenon studied in climate research
    corecore