83 research outputs found

    Characteristics of Ni-Doped IZO Layers Grown on IZO Anode for Enhancing Hole Injection in OLEDs

    Get PDF
    The preparation and characteristics of a Ni-doped indium zinc oxide (NIZO) layer were investigated to enhance hole injection in organic light emitting diodes (OLEDs). A thin NIZO layer with a thickness of 5 nm was cosputtered onto an indium zinc oxide (IZO) anode using tilted Ni and IZO dual targets dc magnetron sputtering at room temperature in a pure Ar atmosphere. Using 3 W of Ni dc power, we can obtain a NIZO (5 nm)/IZO (135 nm) double-layer anode with a sheet resistance of 30.04 / and an optical transmittance of 83.8% at a wavelength of 550 nm. In addition, it was found that the work function of the NIZO layer was higher than that of a pure IZO anode due to the presence of a NiOx phase in the NIZO layer. An increase of Ni dc power above 7 W significantly degrades the electrical and optical properties in the NIZO layer. X-ray diffraction examination demonstrated that the NIZO layer consisted of an amorphous structure regardless of the Ni dc deposition power due to low substrate temperature. Furthermore, an OLED fabricated on the NIZO layer exhibited a higher current density, luminance, and efficiency due to improved hole injection by the high work function NIZO. These results indicate that the NIZO/IZO anode scheme is a promising anode material system for enhancing hole injection from the anode into the active layer of OLEDs.The authors acknowledge financial support from LG Displays, OLED Panel Development team

    Rare Exonic Minisatellite Alleles in MUC2 Influence Susceptibility to Gastric Carcinoma

    Get PDF
    BACKGROUND: Mucins are the major components of mucus and their genes share a common, centrally-located region of sequence that encodes tandem repeats. Mucins are well known genes with respect to their specific expression levels; however, their genomic levels are unclear because of complex genomic properties. In this study, we identified eight novel minisatellites from the entire MUC2 region and investigated how allelic variation in these minisatellites may affect susceptibility to gastrointestinal cancer. METHODOLOGY/PRINCIPLE FINDINGS: We analyzed genomic DNA from the blood of normal healthy individuals and multi-generational family groups. Six of the eight minisatellites exhibited polymorphism and were transmitted meiotically in seven families, following Mendelian inheritance. Furthermore, a case-control study was performed that compared genomic DNA from 457 cancer-free controls with DNA from individuals with gastric (455), colon (192) and rectal (271) cancers. A statistically significant association was identified between rare exonic MUC2-MS6 alleles and the occurrence of gastric cancer: odds ratio (OR), 2.56; 95% confidence interval (CI), 1.31-5.04; and p = 0.0047. We focused on an association between rare alleles and gastric cancer. Rare alleles were divided into short (40, 43 and 44) and long (47, 50 and 54), according to their TR (tandem repeats) lengths. Interestingly, short rare alleles were associated with gastric cancer (OR = 5.6, 95% CI: 1.93-16.42; p = 0.00036). Moreover, hypervariable MUC2 minisatellites were analyzed in matched blood and cancer tissue from 28 patients with gastric cancer and in 4 cases of MUC2-MS2, minisatellites were found to have undergone rearrangement. CONCLUSIONS/SIGNIFICANCE: Our observations suggest that the short rare MUC2-MS6 alleles could function as identifiers for risk of gastric cancer. Additionally, we suggest that minisatellite instability might be associated with MUC2 function in cancer cells

    Regulation of Adipsin Expression by Endoplasmic Reticulum Stress in Adipocytes

    No full text
    Adpsin is an adipokine that stimulates insulin secretion from β-cells and improves glucose tolerance. Its expression has been found to be markedly reduced in obese animals. However, it remains unclear what factors lead to downregulation of adipsin in the context of obesity. Endoplasmic reticulum (ER) stress response is activated in various tissues under obesity-related conditions and can induce transcriptional reprogramming. Therefore, we aimed to investigate the relationship between adipsin expression and ER stress in adipose tissues during obesity. We observed that obese mice exhibited decreased levels of adipsin in adipose tissues and serum and increased ER stress markers in adipose tissues compared to lean mice. We also found that ER stress suppressed adipsin expression via adipocytes-intrinsic mechanisms. Moreover, the ER stress-mediated downregulation of adipsin was at least partially attributed to decreased expression of peroxisome proliferator-activated receptor γ (PPARγ), a key transcription factor in the regulation of adipocyte function. Finally, treatment with chemical chaperones recovered the ER stress-mediated downregulation of adipsin and PPARγ in vivo and in vitro. Our findings suggest that activated ER stress in adipose tissues is an important cause of the suppression of adipsin expression in the context of obesity

    Emission wavelength tuning of porous silicon with ultra-thin ZnO capping layers by plasma-assisted molecular beam epitaxy

    No full text
    Porous silicon (PS) was prepared by electrochemical anodization. Ultra-thin zinc oxide (ZnO) capping layers were deposited on the PS by plasma-assisted molecular beam epitaxy (PA-MBE). The effects of the ZnO capping layers on the properties of the as-prepared PS were investigated using scanning electron microscopy (SEM) and photoluminescence (PL). The as-prepared PS has circular pores over the entire surface. Its structure is similar to a sponge where the quantum confinement effect (QCE) plays a fundamental role. It was found that the dominant red emission of the porous silicon was tuned to white light emission by simple deposition of the ultra-thin ZnO capping alyers. Specifically, the intensity of white light emission was observed to be enhanced by increasing the growth time from 1 to 3 min.1111sciescopu

    Structural and Optical Properties of ZnO Nanostructures with Various Distance Condition by Vapor Phase Transport

    No full text
    ZnO structures were grown on Au-catalyzed Si substrate with various distances between the source and substrate ranging from 5 to 50 mm by the vapor phase transport at the growth temperature of 900 degrees celcius in argon/oxygen ambient. The structural and optical properties of the ZnO structures were investigated by field-emission scanning electron microscopy, X-ray diffraction and photoluminescence. The ZnO structures exhibited different morphologies, such as nanowires and submicron particles. Particularly, when the distance from the source was 5 mm, it was observed the ZnO nanowires with diameters in the range of 70 to 250 nm and the narrowest full width at half maximum of X-ray diffraction and photoluminescence spectra with 0.061 degrees and 96 meV, respectively. Therefore, the ZnO nanowires had a high crystallinity and optical properties compared to the ZnO submicron particles.1101sciescopu

    Clinical Value of Contrast-Enhanced Harmonic Endoscopic Ultrasonography in the Differential Diagnosis of Pancreatic and Gallbladder Masses

    No full text
    Background/Aims Recent studies have revealed that contrast-enhanced harmonic endoscopic ultrasonography (CEH-EUS) is beneficial in the differential diagnosis of malignant neoplasms of the pancreas and gallbladder from benign masses, in terms of the evaluation of microvasculature and real-time perfusion. In this study, we aimed to prove the clinical value of CEH-EUS in the differential diagnosis of pancreatic and gallbladder masses by direct comparison with that of conventional EUS. Methods We reviewed the sonographic images and medical information of 471 patients who underwent conventional EUS and CEH-EUS for the diagnosis of pancreatic and gallbladder masses at a single medical center (Severance Hospital, Seoul, Korea) between March 2010 and March 2016. Results The enhancement pattern of CEH-EUS of the pancreatic solid masses showed higher sensitivity and specificity in differentiating pancreatic adenocarcinoma and neuroendocrine tumors (82.0% and 87.9% for pancreatic adenocarcinoma and 81.1% and 90.9% for neuroendocrine tumors, respectively), and the area under the receiver operating characteristic curves was higher than that of conventional EUS. The enhancement texture of CEH-EUS of the gallbladder masses showed a higher sensitivity in differentiating malignant masses than that of conventional EUS; however, the difference between the areas under the receiver operating characteristic curves was not statistically significant. Conclusions CEH-EUS can complement conventional EUS in the diagnosis of pancreatic and gallbladder masses, in terms of the limitations of the latter
    corecore