19 research outputs found

    High Prevalence of Cefotaxime Resistant Bacteria in Grazing Beef Cattle: A Cross Sectional Study

    Get PDF
    Although the over-use of antibiotics during food animal production is a potential driver of antimicrobial resistant microorganisms (ARMs), a high prevalence of cefotaxime resistant bacteria (CRB) has been observed in grazing animals raised without antibiotic supplementation. In this cross-sectional study, the prevalence and concentration of CRB in beef cattle on grazing farms were investigated. Fecal samples from the recto-anal junction of cattle (n = 840) and environmental samples (n = 258) were collected from 17 farms in North and Central Florida in the United States, and a survey of farm characteristics, animal husbandry practices, and antibiotic usage was conducted. CRB were detected in fecal samples from 47.4% of all cattle, with the prevalence ranging from 21.1 to 87.5% on farms, and significantly higher (P < 0.001) in calves compared to adult cows (54.1 vs. 41.8%). Environmental samples had a higher prevalence than fecal samples (P < 0.001), with CRB detected in 88.6% of water, 98.7% of soil, and 95.7% of forage samples. Compared to the concentration (log CFU/g) of CRB in fecal samples (2.95, 95% CI: 2.89, 3.02), the concentration of CRB was higher (P < 0.001) in soil and forage samples (5.37, 95% CI: 5.16, 5.57) and lower (P < 0.001) in water samples (1.08, 95% CI: 0.82, 1.36). Soil microbiota from farms with high prevalence of CRB clustered closer together and the proportion of Phylum Proteobacteria was higher on farms with high prevalence of CRB resistance. Large farming operations were associated with a 58% higher likelihood of CRB detection in fecal samples. Regular cleaning of drinking troughs and the addition of ionophores to feed were associated with CRB reduction in fecal samples. Taken together, the widespread of CRB into both cattle seldom treated with cephalosporin antibiotics and the surrounding environment suggests the environment is a natural source of antimicrobial resistance in beef cattle

    Upstream and Downstream Regulation of Asexual Development in Aspergillus fumigatus

    No full text
    The opportunistic human pathogen Aspergillus fumigatus produces a large quantity of asexual spores (conidia), which are the primary agent causing invasive aspergillosis in immunocompromised patients. We investigated the mechanisms controlling asexual sporulation (conidiation) in A. fumigatus via examining functions of four key regulators, GpaA (Gα), AfFlbA (RGS), AfFluG, and AfBrlA, previously studied in Aspergillus nidulans. Expression analyses of gpaA, AfflbA, AffluG, AfbrlA, and AfwetA throughout the life cycle of A. fumigatus revealed that, while transcripts of AfflbA and AffluG accumulate constantly, the latter two downstream developmental regulators are specifically expressed during conidiation. Both loss-of-function AfflbA and dominant activating GpaA(Q204L) mutations resulted in reduced conidiation with increased hyphal proliferation, indicating that GpaA signaling activates vegetative growth while inhibiting conidiation. As GpaA is the primary target of AfFlbA, the dominant interfering GpaA(G203R) mutation suppressed reduced conidiation caused by loss of AfflbA function. These results corroborate the hypothesis that functions of G proteins and RGSs are conserved in aspergilli. We then examined functions of the two major developmental activators AfFluG and AfBrlA. While deletion of AfbrlA eliminated conidiation completely, null mutation of AffluG did not cause severe alterations in A. fumigatus sporulation in air-exposed culture, implying that, whereas the two aspergilli may have a common key downstream developmental activator, upstream mechanisms activating brlA may be distinct. Finally, both AffluG and AfflbA mutants showed reduced conidiation and delayed expression of AfbrlA in synchronized developmental induction, indicating that these upstream regulators contribute to the proper progression of conidiation

    Editorial: The microbiological functionality and safety of fermented foods

    No full text
    J-HM was supported by a grant from Korea University. CR-C was supported by the Spanish Ministry of Science and Innovation (PID2019-107542RB-C21).Peer reviewe

    Growth and Developmental Control in the Model and Pathogenic Aspergilli

    No full text

    Occurrence and Reduction of Biogenic Amines in Kimchi and Korean Fermented Seafood Products

    No full text
    Biogenic amines produced during fermentation may be harmful when ingested in high concentrations. As current regulations remain insufficient to ensure the safety of fermented vegetable products, the current study determined the risks associated with the consumption of kimchi by evaluating the biogenic amine concentrations reported by various studies. Upon evaluation, some kimchi products were found to contain histamine and tyramine at potentially hazardous concentrations exceeding the recommended limit of 100 mg/kg for both histamine and tyramine. The biogenic amines may have originated primarily from metabolic activity by microorganisms during fermentation, as well as from Jeotgal (Korean fermented seafood) and Aekjeot (Korean fermented fish sauce) products commonly used as ingredients for kimchi production. Many studies have suggested that Jeotgal and Aekjeot may contribute to the histamine and tyramine content in kimchi. Microorganisms isolated from kimchi and Jeotgal have been reported to produce both histamine and tyramine. Despite the potential toxicological risks, limited research has been conducted on reducing the biogenic amine content of kimchi and Jeotgal products. The regulation and active monitoring of biogenic amine content during kimchi production appear to be necessary to ensure the safety of the fermented vegetable products

    Tyrosinase Inhibitory Activity of Soybeans Fermented with Bacillus subtilis Capable of Producing a Phenolic Glycoside, Arbutin

    No full text
    The production of arbutin, an effective tyrosinase inhibitor as well as an outstanding antioxidant, by 691 Bacillus strains isolated from soybean-based foods was tested to enhance the tyrosinase inhibitory activity of soybeans via fermentation with the strains. Among the strains tested, the 5 strains capable of significantly producing arbutin were identified as B. subtilis via 16S rRNA sequencing. When soybeans were fermented with each of the selected strains, the arbutin content was highest on day 1 of fermentation and decreased thereafter. However, the tyrosinase inhibitory activity of the fermented soybeans continuously increased as fermentation progressed, whereas the activity of non-inoculated soybeans was consistently low. The results indicate that arbutin enhances the tyrosinase inhibitory activity of soybeans in the early period of fermentation, while other substances besides arbutin contribute to the activity in the later period. Consequently, soybeans fermented with arbutin-producing B. subtilis strains could be considered as a natural source of cosmeceuticals and nutricosmetics used in skin lightening and may be of interest in the food industry because they contain well-known and powerful antioxidants such as arbutin and other substances

    Reduction in Biogenic Amine Content in <i>Baechu</i> (Napa Cabbage) Kimchi by Biogenic Amine-Degrading Lactic Acid Bacteria

    No full text
    This study was performed to mine biogenic amine (BA)-degrading lactic acid bacteria (LAB) from kimchi and to investigate the effects of the LAB strains on BA reduction in Baechu kimchi fermentation. Among 1448 LAB strains isolated from various kimchi varieties, five strains capable of considerably degrading histamine and/or tyramine were selected through in vitro tests and identified as Levilactobacillus brevis PK08, Lactiplantibacillus pentosus PK05, Leuconostoc mesenteroides YM20, L. plantarum KD15, and Latilactobacillus sakei YM21. The selected strains were used to ferment five groups of Baechu kimchi, respectively. The LB group inoculated with L. brevis PK08 showed the highest reduction in tyramine content, 66.65% and 81.89%, compared to the control group and the positive control group, respectively. Other BA content was also considerably reduced, by 3.76–89.26% (five BAs) and 7.87–23.27% (four BAs), compared to the two control groups, respectively. The other inoculated groups showed similar or less BA reduction than the LB group. Meanwhile, a multicopper oxidase gene was detected in L. brevis PK08 when pursuing the BA degradation mechanism. Consequently, L. brevis PK08 could be applied to kimchi fermentation as a starter or protective culture to improve the BA-related safety of kimchi where prolific tyramine-producing LAB strains are present

    The Occurrence of Biogenic Amines and Determination of Biogenic Amine-Producing Lactic Acid Bacteria in <i>Kkakdugi</i> and <i>Chonggak</i> Kimchi

    No full text
    In this study, biogenic amine content in two types of fermented radish kimchi (Kkakdugi and Chonggak kimchi) was determined by high performance liquid chromatography (HPLC). While most samples had low levels of biogenic amines, some samples contained histamine content over the toxicity limit. Additionally, significant amounts of total biogenic amines were detected in certain samples due to high levels of putrefactive amines. As one of the significant factors influencing biogenic amine content in both radish kimchi, Myeolchi-aekjoet appeared to be important source of histamine. Besides, tyramine-producing strains of lactic acid bacteria existed in both radish kimchi. Through 16s rRNA sequencing analysis, the dominant species of tyramine-producing strains was identified as Lactobacillus brevis, which suggests that the species is responsible for tyramine formation in both radish kimchi. During fermentation, a higher tyramine accumulation was observed in both radish kimchi when L. brevis strains were used as inocula. The addition of Myeolchi-aekjeot affected the initial concentrations of histamine and cadaverine in both radish kimchi. Therefore, this study suggests that reducing the ratio of Myeolchi-aekjeot to other ingredients (and/or using Myeolchi-aekjeot with low biogenic amine content) and using starter cultures with ability to degrade and/or inability to produce biogenic amines would be effective in reducing biogenic amine content in Kkakdugi and Chonggak kimchi

    GC-MS/MS Method for Determination of Polycyclic Aromatic Hydrocarbons in Herbal Medicines

    No full text
    Polycyclic aromatic hydrocarbons (PAHs) are hydrophobic organic contaminants that have a highly carcinogenic and mutagenic nature. This study aimed to develop and validate a sensitive analytical method to determine 8 PAHs in 51 herbal medicines (HMs) using gas chromatography (GC)-tandem mass spectrometry (MS/MS). Liquid––liquid extraction and florisil SPE cartridge purification were basically adopted for pretreatment. For the samples containing essential oil, starch grain, etc., N,N-dimethyl formamide/water mixture (9:1, v/v) was added in the extraction step. The multiple reaction monitoring (MRM) conditions were newly obtained by the infusion of reference solutions of the targeted compounds at a concentration of 100 ng/mL into the GC-MS/MS system used in this study. The 51 items were classified according to whether or not they contained essential oil. Eight PAHs were not detected in 39 (8.3%) of the 459 samples monitored. The total content of 8 PAHs ranged from 0.45 μg/kg in Anemarrhenae Rhizoma to 270.94 μg/kg in Zingiberis Rhizoma. The average content of those ranged from 0.9 μg/kg in Araliae Continentalis Radix to 110.8 μg/kg in Coptidis Rhizoma Preparata cum Vinum. The results of this study prove that the proposed method is useful for determining 8 PAHs in HMs

    Formation of Biogenic Amines in <i>Pa</i> (Green Onion) Kimchi and <i>Gat</i> (Mustard Leaf) Kimchi

    No full text
    In this study, biogenic amine content in Pa (green onion) kimchi and Gat (mustard leaf) kimchi, Korean specialty kimchi types, was determined by high-performance liquid chromatography (HPLC). Many kimchi samples contained low levels of biogenic amines, but some samples had histamine and tyramine content over the safe levels. Based on the comparative analysis between the ingredient information on food labels and biogenic amine content of kimchi samples, Myeolchi-aekjeot appeared to be an important source of biogenic amines in both kimchi. Besides, through the 16s rRNA sequence analysis, Lactobacillus brevis appeared to be responsible for the formation of biogenic amines (tyramine, &#946;-phenylethylamine, putrescine, and cadaverine) in both kimchi, in a strain-dependent manner. During fermentation, a higher accumulation of tyramine, &#946;-phenylethylamine, and putrescine was observed in both or one (for putrescine) of kimchi types when L. brevis strains served as inocula. The addition of Myeolchi-aekjeot affected the initial concentrations of most biogenic amines (except for spermidine in Gat kimchi) in both kimchi. Therefore, this study suggests that using appropriately salted and fermented seafood products for kimchi preparation and using biogenic amine-negative and/or biogenic amine-degrading starter cultures would be effective in reducing biogenic amine content in Pa kimchi and Gat kimchi
    corecore