1,717 research outputs found

    An analysis of the acoustic cavitation noise spectrum: The role of periodic shock waves

    Get PDF
    Research on applications of acoustic cavitation is often reported in terms of the features within the spectrum of the emissions gathered during cavitation occurrence. There is, however, limited understanding as to the contribution of specific bubble activity to spectral features, beyond a binary interpretation of stable versus inertial cavitation. In this work, laser-nucleation is used to initiate cavitation within a few millimeters of the tip of a needle hydrophone, calibrated for magnitude and phase from 125 kHz to 20 MHz. The bubble activity, acoustically driven at f0 = 692 kHz, is resolved with high-speed shadowgraphic imaging at 5 × 106 frames per second. A synthetic spectrum is constructed from component signals based on the hydrophone data, deconvolved within the calibration bandwidth, in the time domain. Cross correlation coefficients between the experimental and synthetic spectra of 0.97 for the f 0/2 and f 0/3 regimes indicate that periodic shock waves and scattered driving field predominantly account for all spectral features, including the sub-harmonics and their over-harmonics, and harmonics of f 0

    Evaluation of combinatorial cis-regulatory elements for stable gene expression in chicken cells

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Recent successes in biotechnological application of birds are based on their unique physiological traits such as unlimited manipulability onto developing embryos and simple protein constituents of the eggs. However it is not likely that target protein is produced as kinetically expected because various factors affect target gene expression. Although there have been various attempts to minimize the silencing of transgenes, a generalized study that uses multiple cis-acting elements in chicken has not been made. The aim of the present study was to analyze whether various cis-acting elements can help to sustain transgene expression in chicken fibroblasts. Results: We investigated the optimal transcriptional regulatory elements for enhancing stable transgene expression in chicken cells. We generated eight constructs that encode enhanced green fluorescent protein (eGFP) driven by either CMV or CAG promoters (including the control), containing three types of key regulatory elements: a chicken lysozyme matrix attachment region (cMAR), 5′-DNase I-hypersensitive sites 4 (cHS4), and the woodchuck hepatitis virus posttranscriptional regulatory element (WPRE). Then we transformed immortalized chicken embryonic fibroblasts with these constructs by electroporation, and after cells were expanded under G418 selection, analyzed mRNA levels and mean fluorescence intensity (MFI) by quantitative real-time PCR and flow cytometry, respectively. We found that the copy number of each construct significantly decreased as the size of the construct increased (R2 = 0.701). A significant model effect was found in the expression level among various constructs in both mRNA and protein (P < 0.0001). Transcription with the CAG promoter was 1.6-fold higher than the CMV promoter (P = 0.027) and the level of eGFP expression activity in cMAR- or cHS4-flanked constructs increased by two- to three-fold compared to the control CMV or CAG promoter constructs. In addition, flow cytometry analysis showed that constructs having cis-acting elements decreased the level of gene silencing as well as the coefficient of variance of eGFP-expressing cells (P < 0.0001). Conclusions: Our current data show that an optimal combination of cis-acting elements and promoters/enhancers for sustaining gene expression in chicken cells is suggested. These results provide important information for avian transgenesis and gene function studies in poultry

    Effect of Osmotic Pressure on the Stability of Whole Inactivated Influenza Vaccine for Coating on Microneedles

    Get PDF
    Enveloped virus vaccines can be damaged by high osmotic strength solutions, such as those used to protect the vaccine antigen during drying, which contain high concentrations of sugars. We therefore studied shrinkage and activity loss of whole inactivated influenza virus in hyperosmotic solutions and used those findings to improve vaccine coating of microneedle patches for influenza vaccination. Using stopped-flow light scattering analysis, we found that the virus underwent an initial shrinkage on the order of 10% by volume within 5 s upon exposure to a hyperosmotic stress difference of 217 milliosmolarity. During this shrinkage, the virus envelope had very low osmotic water permeability (1 – 6×10−4 cm s–1) and high Arrhenius activation energy (Ea = 15.0 kcal mol–1), indicating that the water molecules diffused through the viral lipid membranes. After a quasi-stable state of approximately 20 s to 2 min, depending on the species and hypertonic osmotic strength difference of disaccharides, there was a second phase of viral shrinkage. At the highest osmotic strengths, this led to an undulating light scattering profile that appeared to be related to perturbation of the viral envelope resulting in loss of virus activity, as determined by in vitro hemagglutination measurements and in vivo immunogenicity studies in mice. Addition of carboxymethyl cellulose effectively prevented vaccine activity loss in vitro and in vivo, believed to be due to increasing the viscosity of concentrated sugar solution and thereby reducing osmotic stress during coating of microneedles. These results suggest that hyperosmotic solutions can cause biphasic shrinkage of whole inactivated influenza virus which can damage vaccine activity at high osmotic strength and that addition of a viscosity enhancer to the vaccine coating solution can prevent osmotically driven damage and thereby enable preparation of stable microneedle coating formulations for vaccination

    Gravity from Quantum Information

    Full text link
    It is suggested that the Einstein equation can be derived from Landauer's principle applied to an information erasing process at a local Rindler horizon and Jacobson's idea linking the Einstein equation with thermodynamics. When matter crosses the horizon, the information of the matter disappears and the horizon entanglement entropy increases to compensate the entropy reduction. The Einstein equation describes an information-energy relation during this process, which implies that entropic gravity is related to the quantum entanglement of the vacuum and has a quantum information theoretic origin.Comment: 7 pages, revtex4-1, 2 figures, recent supporting results adde

    Combined resistance and aerobic exercise training reduces insulin resistance and central adiposity in adolescent girls who are obese: randomized clinical trial

    Get PDF
    Introduction Exercise training is recommended for improving health and protecting against the development of metabolic and cardiovascular pathologies. Combined resistance and aerobic exercise training (CRAE) has been shown to provide unique benefits in older adults with cardiovascular diseases. Purpose We sought to determine the beneficial effects of CRAE in adolescent girls who are obese and hyperinsulinemic. Methods Forty adolescent girls who are obese (age 14.7 ± 1 years; BMI 30 ± 2) were randomly assigned to a “no exercise” (CON n = 20) or combined exercise group (EX n = 20). The EX group performed resistance and aerobic exercise for 12 weeks, 5 times per week. Exercise intensity was increased gradually, from 40 to 70% of heart rate reserve (HRR), every 4 weeks. The brachial-ankle pulse wave velocity (BaPWV), blood pressure (BP), heart rate (HR), blood leptin, adiponectin levels, and body composition were measured before and after the 12-week intervention. Results We observed that CRAE effectively reduced the body fat percentage, body weight, and waist circumference in the EX group (p \u3c 0.05). After 12 weeks of training, subjects in the CRAE group maintained appropriate leptin and adiponectin levels and showed positive improvements of blood insulin, glucose, and insulin resistance parameters relative to baseline and to the CON group (p \u3c 0.05). Conclusion CRAE is a useful therapeutic method to alleviate metabolic risk factors in adolescent girls who are obese and hyperinsulinemic

    Distinct Expression Pattern and Post-Transcriptional Regulation of Cell Cycle Genes in the Glandular Epithelia of Avian Ovarian Carcinomas

    Get PDF
    The cell cycle system is controlled in a timely manner by three groups of cyclins, cyclin dependent kinases and cyclin dependent kinase inhibitors. Abnormal alterations of cell cycle regulatory mechanisms are a common feature of many diseases including numerous tumor types such as ovarian cancer. Although a variety of cell cycle regulatory genes are well known in mammalian species including human and mice, they are not well studied in avian species, especially in laying hens which are recognized as an excellent animal model for research relevant to human ovarian carcinogenesis. Therefore, in the present study, we focused on comparative expression and regulation of expression of candidate genes which might be involved in the cell cycle program in surface epithelial ovarian cancer in laying hens. Our current results indicate that expression levels of cell cycle gene transcripts are greater in cancerous as compared to normal ovaries. In particular, cyclin A2 (CCNA2), CCND1, CCND2, CCND3, CCNE2, cyclin dependent kinase 1 (CDK1), CDK3, CDK5, cyclin dependent kinases inhibitor 1A (CDKN1A) and CDKN1B were upregulated predominantly in the glandular epithelia of cancerous ovaries from laying hens. Further, several microRNAs (miRs), specifically miR-1798, miR-1699, miR-223 and miR-1744 were discovered to influence expression of CCND1, CCNE2, CDK1, and CDK3 mRNAs, respectively, via their 3'-UTR which suggests that post-transcriptional regulation of gene expression influences their expression in laying hens. Moreover, miR-1626 influenced CDKN1A expression and miR-222, miR-1787 and miR-1812 regulated CDKN1B expression via their 3'-UTR regions. Collectively, results of the present study demonstrate increased expression of cell cycle-related genes in cancerous ovaries of laying hens and indicate that expression of these genes is post-transcriptionally regulated by specific microRNAs

    Proliferation-Stimulating Effect of Colony Stimulating Factor 2 on Porcine Trophectoderm Cells Is Mediated by Activation of Phosphatidylinositol 3-Kinase and Extracellular Signal-Regulated Kinase 1/2 Mitogen-Activated Protein Kinase

    Get PDF
    Colony-stimulating factor 2 (CSF2), also known as granulocyte macrophage colony-stimulating factor, facilitates mammalian embryonic development and implantation. However, biological functions and regulatory mechanisms of action of porcine endometrial CSF2 in peri-implantation events have not been elucidated. The aim of present study was to determine changes in cellular activities induced by CSFs and to access CSF2-induced intracellular signaling in porcine primary trophectoderm (pTr) cells. Differences in expression of CSF2 mRNA in endometrium from cyclic and pregnant gilts were evaluated. Endometrial CSF2 mRNA expression increases during the peri-implantation period, Days 10 to 14 of pregnancy, as compared to the estrous cycle. pTr cells obtained in Day 12 of pregnancy were cultured in the presence or absence of CSF2 (20 ng/ml) and LY294002 (20 µM), U0126 (20 µM), rapamycin (20 nM), and SB203580 (20 µM). CSF2 in pTr cell culture medium at 20 ng/ml significantly induced phosphorylation of AKT1, ERK1/2, MTOR, p70RSK and RPS6 protein, but not STAT3 protein. Also, the PI3K specific inhibitor (LY294002) abolished CSF2-induced increases in p-ERK1/2 and p-MTOR proteins, as well as CSF2-induced phosphorylation of AKT1. Changes in proliferation and migration of pTr cells in response to CSF2 were examined in dose- and time-response experiments. CSF2 significantly stimulated pTr cell proliferation and, U0126, rapamycin and LY294002 blocked this CSF2-induced proliferation of pTr cells. Collectively, during the peri-implantation phase of pregnancy in pigs, endometrial CSF2 stimulates proliferation of trophectoderm cells by activation of the PI3K-and ERK1/2 MAPK-dependent MTOR signal transduction cascades

    Age-Related Changes in Egg Quality of Hy-Line Brown Hens

    Get PDF
    Abstract: The present study was conducted to monitor age-related changes in egg quality during the entire production cycle of laying hens. Thirty eggs were sampled from the commercial farm on a weekly basis for egg analysis. In order to increase in confidence in sampling, farm personnel were educated to collect the eggs from the pre-determined cages during the whole period and all layers were subjected to an identical farm management and fed a commercial layer diet. In total, 1,470 eggs were sampled and transported to the laboratory of Korea Institute for Animal Products Quality Evaluation. The parameters for egg quality included egg weight, eggshell color, eggshell breaking strength, eggshell thickness, Haugh unit and yolk color. It was shown that egg weight increased as the hen aged. Eggshell breaking strength gradually decreased, but eggshell thickness was randomly scattered without showing any age-related trends during the laying period. The intensity of eggshell color kept relatively constant while yolk color increased with age. Finally, Haugh unit as an indicator of freshness of eggs was consistently decreased as the hens aged. In this study, we noticed that eggshell breaking strength and egg weight were negatively correlated (r= -0.500, p&lt;0.001). Eggshell color did not significantly correlate with eggshell thickness (r = -0.074, p&gt;0.50), but marginally and positively correlated with egg weight (r = 0.248, p = 0.082). It is concluded that among the various egg quality parameters analyzed, egg weight, eggshell breaking strength or Haugh unit reduced as the hens aged. Further study is needed to include various parameters of egg quality such as chemical or nutritional composition which will provide more insight into the age-mediated changes in egg quality

    The role of interspecies recombination in the evolution of antibiotic-resistant pneumococci

    Get PDF
    Multidrug-resistant Streptococcus pneumoniae emerge through the modification of core genome loci by interspecies homologous recombinations, and acquisition of gene cassettes. Both occurred in the otherwise contrasting histories of the antibiotic-resistant S. pneumoniae lineages PMEN3 and PMEN9. A single PMEN3 clade spread globally, evading vaccine-induced immunity through frequent serotype switching, whereas locally circulating PMEN9 clades independently gained resistance. Both lineages repeatedly integrated Tn916-type and Tn1207.1-type elements, conferring tetracycline and macrolide resistance, respectively, through homologous recombination importing sequences originating in other species. A species-wide dataset found over 100 instances of such interspecific acquisitions of resistance cassettes and flanking homologous arms. Phylodynamic analysis of the most commonly sampled Tn1207.1-type insertion in PMEN9, originating from a commensal and disrupting a competence gene, suggested its expansion across Germany was driven by a high ratio of macrolide-to-β-lactam consumption. Hence, selection from antibiotic consumption was sufficient for these atypically large recombinations to overcome species boundaries across the pneumococcal chromosome
    corecore