5,649 research outputs found
Accurate Microwave Control and Real-Time Diagnostics of Neutral Atom Qubits
We demonstrate accurate single-qubit control in an ensemble of atomic qubits
trapped in an optical lattice. The qubits are driven with microwave radiation,
and their dynamics tracked by optical probe polarimetry. Real-time diagnostics
is crucial to minimize systematic errors and optimize the performance of
single-qubit gates, leading to fidelities of 0.99 for single-qubit pi
rotations. We show that increased robustness to large, deliberately introduced
errors can be achieved through the use of composite rotations. However, during
normal operation the combination of very small intrinsic errors and additional
decoherence during the longer pulse sequences precludes any significant
performance gain in our current experiment.Comment: 9 pages, 7 figure
How dsDNA breathing enhances its flexibility and instability on short length scales
We study the unexpected high flexibility of short dsDNA which recently has
been reported by a number of experiments. Via the Langevin dynamics simulation
of our Breathing DNA model, first we observe the formation of bubbles within
the duplex and also forks at the ends, with the size distributions independent
of the contour length. We find that these local denaturations at a
physiological temperature, despite their rare and transient presence, can lower
the persistence length drastically for a short DNA segment in agreement with
experiment
Quantum chaos algorithms and dissipative decoherence with quantum trajectories
Using the methods of quantum trajectories we investigate the effects of
dissipative decoherence in a quantum computer algorithm simulating dynamics in
various regimes of quantum chaos including dynamical localization, quantum
ergodic regime and quasi-integrable motion.
As an example we use the quantum sawtooth algorithm which can be implemented
in a polynomial number of quantum gates.
It is shown that the fidelity of quantum computation decays exponentially
with time and that the decay rate is proportional to the number of qubits,
number of quantum gates and per gate dissipation rate induced by external
decoherence.
In the limit of strong dissipation the quantum algorithm generates a quantum
attractor which may have complex or simple structure.
We also compare the effects of dissipative decoherence with the effects of
static imperfections.Comment: 6 pages, 6 figs, research at http://www.quantware.ups-tlse.f
Arctic Low Cloud Changes as Observed by MISR and CALIOP: Implication for the Enhanced Autumnal Warming and Sea Ice Loss
Retreat of Arctic sea ice extent has led to more evaporation over open water in summer and subsequent cloud changes in autumn. Studying recent satellite cloud data over the Arctic Ocean, we find that low (0.5-2 km) cloud cover in October has been increasing significantly during 2000-2010 over the Beaufort and East Siberian Sea (BESS). This change is consistent with the expected boundary-layer cloud response to the increasing Arctic evaporation accumulated during summer. Because low clouds have a net warming effect at the surface, October cloud increases may be responsible for the enhanced autumnal warming in surface air temperature, which effectively prolong the melt season and lead to a positive feedback to Arctic sea ice loss. Thus, the new satellite observations provide a critical support for the hypothesized positive feedback involving interactions between boundary-layer cloud, water vapor, temperature and sea ice in the Arctic Ocean
Inelastic scattering in a monolayer graphene sheet; a weak-localization study
Charge carriers in a graphene sheet, a single layer of graphite, exhibit much
distinctive characteristics to those in other two-dimensional electronic
systems because of their chiral nature. In this report, we focus on the
observation of weak localization in a graphene sheet exfoliated from a piece of
natural graphite and nano-patterned into a Hall-bar geometry. Much stronger
chiral-symmetry-breaking elastic intervalley scattering in our graphene sheet
restores the conventional weak localization. The resulting carrier-density and
temperature dependence of the phase coherence length reveal that the
electron-electron interaction including a direct Coulomb interaction is the
main inelastic scattering factor while electron-hole puddles enhance the
inelastic scattering near the Dirac point.Comment: 12 pages, 3 figures, submitted to PR
Ultracompact bottom-up photonic crystal lasers on silicon-on-insulator
Abstract Compact on-chip light sources lie at the heart of practical nanophotonic devices since chip-scale photonic circuits have been regarded as the next generation computing tools. In this work, we demonstrate room-temperature lasing in 7 × 7 InGaAs/InGaP core-shell nanopillar array photonic crystals with an ultracompact footprint of 2300 × 2300 nm2, which are monolithically grown on silicon-on-insulator substrates. A strong lateral confinement is achieved by a photonic band-edge mode, which is leading to a strong light-matter interaction in the 7 × 7 nanopillar array, and by choosing an appropriate thickness of a silicon-on-insulator layer the band-edge mode can be trapped vertically in the nanopillars. The nanopillar array band-edge lasers exhibit single-mode operation, where the mode frequency is sensitive to the diameter of the nanopillars. Our demonstration represents an important first step towards developing practical and monolithic III-V photonic components on a silicon platform
B-Meson Observables in the Maximally CP-Violating MSSM with Minimal Flavour Violation
Additional sources of CP violation in the MSSM may affect B-meson mixings and
decays, even in scenarios with minimal flavour violation (MFV). We formulate
the maximally CP-violating and minimally flavour-violating (MCPMFV) variant of
the MSSM, which has 19 parameters, including 6 phases that violate CP. We then
develop a manifestly flavour-covariant effective Lagrangian formalism for
calculating Higgs-mediated FCNC observables in the MSSM at large tan(beta), and
analyze within the MCPMFV framework FCNC and other processes involving B
mesons. We include a new class of dominant subleading contributions due to
non-decoupling effects of the third-generation quarks. We present illustrative
numerical results that include effects of the CP-odd MCPMFV parameters on Higgs
and sparticle masses, the B_s and B_d mass differences, and on the decays B_s
--> mu+ mu-, B_u --> tau nu and b --> s gamma. We use these results to derive
illustrative constraints on the MCPMFV parameters imposed by D0, CDF, BELLE and
BABAR measurements of B mesons, demonstrating how a potentially observable
contribution to the CP asymmetry in the b --> s gamma decay may arise in the
MSSM with MCPMFV.Comment: 47 pages, 8 eps figures, comments and references added, accepted for
publication in Physical Review D, Eq.(3.2) correcte
[Fe II] and H2 filaments in the Supernova Remnant G11.2-0.3: Supernova Ejecta and Presupernova Circumstellar Wind
We present the results of near-infrared imaging and spectroscopic
observations of the young, core-collapse supernova remnant (SNR) G11.2-0.3. In
the [Fe II] 1.644 um image, we first discover long, clumpy [Fe II] filaments
within the radio shell of the SNR, together with some faint, knotty features in
the interior of the remnant. We have detected several [Fe II] lines and HI Br-G
line toward the peak position of the bright southeastern [Fe II] filament. The
derived extinction is large (Av=13 mag) and it is the brightest [Fe II]
filament detected toward SNRs to date. By analyzing two [Fe II] 1.644 um images
obtained in 2.2 yrs apart, we detect a proper motion corresponding to an
expansion rate of 0.''035 (0.''013) /yr [or 830 (310) km/s]. We also discover
two small H2 filaments. One is bright and along the SE boundary of the radio
shell, while the other is faint and just outside of its NE boundary. We have
detected H2 (2-1) S(3) line toward the former filament and derive an excitation
temperature of 2,100 K. We suggest that the H2 filaments are dense clumps in a
presupernova circumstellar wind swept up by the SNR shock while the [Fe II]
filaments are probably composed of both shocked wind material and shocked
supernova (SN) ejecta. The distribution of [Fe II] filaments may indicate that
the SN explosion in G11.2-0.3 was asymmetric as in Cassiopeia A. Our results
support the suggestion that G11.2-0.3 is a remnant of a SN IIL/b interacting
with a dense red supergiant wind.Comment: 30 pages with 10 figures, To appear in the Astrophysical Journa
- …