611 research outputs found

    Brain Iron Accumulation in Atypical Parkinsonian Syndromes: in vivo MRI Evidences for Distinctive Patterns

    Get PDF
    Recent data suggest mechanistic links among perturbed iron homeostasis, oxidative stress, and misfolded protein aggregation in neurodegenerative diseases. Iron overload and toxicity toward dopaminergic neurons have been established as playing a role in the pathogenesis of Parkinson's disease (PD). Brain iron accumulation has also been documented in atypical parkinsonian syndromes (APS), mainly comprising multiple system atrophy (MSA), and progressive supranuclear palsy (PSP). Iron-sensitive magnetic resonance imaging (MRI) has been applied to identify iron-related signal changes for the diagnosis and differentiation of these disorders. Topographic patterns of widespread iron deposition in deep brain nuclei have been described as differing between patients with MSA and PSP and those with PD. A disease-specific increase of iron occurs in the brain regions mainly affected by underlying disease pathologies. However, whether iron changes are a primary pathogenic factor or an epiphenomenon of neuronal degeneration has not been fully elucidated. Moreover, the clinical implications of iron-related pathology in APS remain unclear. In this review study, we collected data from qualitative and quantitative MRI studies on brain iron accumulation in APS to identify disease-related patterns and the potential role of iron-sensitive MRI

    Eisosome ultrastructure and evolution in fungi, microalgae, and lichens

    Get PDF
    Eisosomes are among the few remaining eukaryotic cellular differentations that lack a defined function(s). These trough-shaped invaginations of the plasma membrane have largely been studied in Saccharomyces cerevisiae, in which their associated proteins, including two BAR domain proteins, have been identified, and homologues have been found throughout the fungal radiation. Using quick-freeze deep-etch electron microscopy to generate high-resolution replicas of membrane fracture faces without the use of chemical fixation, we report that eisosomes are also present in a subset of red and green microalgae as well as in the cysts of the ciliate Euplotes. Eisosome assembly is closely correlated with both the presence and the nature of cell walls. Microalgal eisosomes vary extensively in topology and internal organization. Unlike fungi, their convex fracture faces can carry lineage-specific arrays of intramembranous particles, and their concave fracture faces usually display fine striations, also seen in fungi, that are pitched at lineage-specific angles and, in some cases, adopt a broad-banded patterning. The conserved genes that encode fungal eisosome-associated proteins are not found in sequenced algal genomes, but we identified genes encoding two algal lineage-specific families of predicted BAR domain proteins, called Green-BAR and Red-BAR, that are candidate eisosome organizers. We propose a model for eisosome formation wherein (i) positively charged recognition patches first establish contact with target membrane regions and (ii) a (partial) unwinding of the coiled-coil conformation of the BAR domains then allows interactions between the hydrophobic faces of their amphipathic helices and the lipid phase of the inner membrane leaflet, generating the striated patterns

    Solvent Exfoliation of Electronic-Grade, Two-Dimensional Black Phosphorus

    Full text link
    Solution dispersions of two-dimensional (2D) black phosphorus (BP), often referred to as phosphorene, are achieved by solvent exfoliation. These pristine, electronic-grade BP dispersions are produced with anhydrous, organic solvents in a sealed tip ultrasonication system, which circumvents BP degradation that would otherwise occur via solvated oxygen or water. Among conventional solvents, n-methyl-pyrrolidone (NMP) is found to provide stable, highly concentrated (~0.4 mg/mL) BP dispersions. Atomic force microscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy show that the structure and chemistry of solvent-exfoliated BP nanosheets are comparable to mechanically exfoliated BP flakes. Additionally, residual NMP from the liquid-phase processing suppresses the rate of BP oxidation in ambient conditions. Solvent-exfoliated BP nanosheet field-effect transistors (FETs) exhibit ambipolar behavior with current on/off ratios and mobilities up to ~10000 and ~50 cm^2/(V*s), respectively. Overall, this study shows that stable, highly concentrated, electronic-grade 2D BP dispersions can be realized by scalable solvent exfoliation, thereby presenting opportunities for large-area, high-performance BP device applications.Comment: 6 figures, 31 pages, including supporting informatio

    THE EFFECT OF GAS TEMPERATURE AND VELOCITY ON COAL DRYING IN FLUIDIZED BED DRYER

    Get PDF
    The objective of this research work is to develop fluidized bed coal dryer to overcome the disadvantages of low rank coal with high moisture such as low calorific values, costly transportation, high emissions of pollutants, and operational problem. In this paper, laboratory scale bubbling fluidized bed was used to dry high moisture, low-rank Indonesian coal to produce low moisture, high-rank coal. The effects of temperature, gas velocity and bed height to diameter ratio (L/D) on drying rate were studied to obtain information relating to optimum operating conditions. Coal characterizations (proximate analysis, ultimate analysis, Thermogravimetric Analysis (TGA), BET, Higher Heating Value (HHV), Lower Heating Value (LHV)) were performed to identify the effect of the change of moisture content. This investigation aims to study the drying process under moderated heating conditions. As a result of the experiments the conclusion is that the thermal fluidized bed process can be successfully applied to reducing moisture in Indonesian coal. Results also indicate that about 80~90% of total moisture could be reduced, including some of the inherent moisture, yielding high heating value product. The drying rate of coal in a fluidized bed is increased by increasing the temperature and velocity of the drying gas. However gas temperature had limitations causing from the spontaneous combustion and gas velocity has to be decided considering energy efficiency
    • …
    corecore