293 research outputs found

    Molecular cloning and expression of novel fibroblast growth factor-2 conjugated with immunodominant domains of pseudomonas exotoxin

    Get PDF
    Angiogenesis is very important in cancer growth and metastasis. Basic fibroblast growth factor (bFGF) as one of the most important angiogenesis factors is an attractive target for cancer vaccine. Due to low immunogenicity, it cannot stimulate an effective immune response. Theoretically, pseudomonas exotoxin (PE) as a potent immunogenic carrier protein when fused to low immunogenic antigens such as bFGF significantly increased immunogenicity of it. In this study, we tried to molecular cloning and expression of bFGF conjugated with immunodominant domains of pseudomonas exotoxin. The coding sequence of fusion protein composed of bFGF linked to PE domains 1b and 2 using EAAAK poly linker. The KDEL sequence was also used in C-terminal coding sequence. It was synthesized and expressed using recombinant DNA technology in the bacterial expression system. Expression of recombinant protein verified using SDS-PAGE and western blot analyses. Finally, it purified using Ni-affinity chromatography. The band close to 37 kDa in SDS-PAGE and western blot analyses was aligned completely to designed sequence. Purified recombinant protein also showed as a clear single band near to 37 kDa

    The Significance of Matrix Metalloproteinases in the Immunopathogenesis and Treatment of Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS). The major pathological outcomes of the disease are the loss of blood-brain barrier (BBB) integrity and the development of reactive astrogliosis and MS plaque. For the disease to occur, the non-resident cells must enter into the immune-privileged CNS through a breach in the relatively impermeable BBB. It has been demonstrated that matrix metalloproteinases (MMPs) play an important role in the immunopathogenesis of MS, in part through the disruption of the BBB and the recruitment of inflammatory cells into the CNS. Moreover, MMPs can also enhance the cleavage of myelin basic protein (MBP) and the demyelination process. Regarding the growing data on the roles of MMPs and their tissue inhibitors (TIMPs) in the pathogenesis of MS, this review discusses the role of different types of MMPs, including MMP-2, -3, -7, -9, -12 and -25, in the immunopathogenesis and treatment of MS

    Mechanisms of tumor cell resistance to the current targeted-therapy agents

    Get PDF
    Abstract Resistance to chemotherapy agents is a major challenge infront of cancer patient treatment and researchers. It is known that several factors, such as multidrug resistance proteins and ATP-binding cassette families, are cell membrane transporters that can efflux several substrates such as chemotherapy agents from the cell cytoplasm. To reduce the adverse effects of chemotherapy agents, various targeted-based cancer therapy (TBCT) agents have been developed. TBCT has revolutionized cancer treatment, and several agents have shown more specific effects on tumor cells than chemotherapies. Small molecule inhibitors and monoclonal antibodies are specific agents that mostly target tumor cells but have low side effects on normal cells. Although these agents have been very useful for cancer treatment, however, the presence of natural and acquired resistance has blunted the advantages of targeted therapies. Therefore, development of new options might be necessary. A better understanding of tumor cell resistance mechanisms to current treatment agents may provide an appropriate platform for developing and improving new treatment modalities. Therefore, in this review, different mechanisms of tumor cell resistance to chemotherapy drugs and current targeted therapies have been described

    Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy

    Get PDF
    The selective and efficient drug delivery to tumor cells can remarkably improve different cancer therapeutic approaches. There are several nanoparticles (NPs) which can act as a potent drug carrier for cancer therapy. However, the specific drug delivery to cancer cells is an important issue which should be considered before designing new NPs for in vivo application. It has been shown that cancer cells over-express folate receptor (FR) in order to improve their growth. As normal cells express a significantly lower levels of FR compared to tumor cells, it seems that folate molecules can be used as potent targeting moieties in different nanocarrier-based therapeutic approaches. Moreover, there is evidence which implies folate-conjugated NPs can selectively deliver anti-tumor drugs into cancer cells both in vitro and in vivo. In this review, we will discuss about the efficiency of different folate-conjugated NPs in cancer therapy. © 2015, International Society of Oncology and BioMarkers (ISOBM)

    Analysis of human B cell response to recombinant Leishmania LPG3

    Get PDF
    AbstractObjectiveTo evaluate the capability of recombinant Leishmania LPG3 and its fragments in the activation of B cells.MethodsIn the present study, human B cells were purified from peripheral blood of 10 adult healthy subjects using magnetic-activated cell sorting technique. Subsequently, purified B cells were treated with recombinant LPG3, and its N-terminal and C-terminal fragments at different concentrations (2, 10 and 20 μg/mL). B cell activation was assessed through expression of CD69 molecule by flow cytometry and secretion of IL-6, TNF-α and IL-10 cytokines via enzyme-linked immunosorbent assay following treatment with recombinant antigens.ResultsOur results showed that while the recombinant LPG-3 could significantly increase the production of IL-6 and TNF-α (P < 0.05) in B cells, it had no effect on the secretion of IL-10 by B cells.ConclusionsOur study indicated that recombinant LPG-3 and especially its N-terminal fragment could stimulate B cell response as an important immune response component against leishmaniasis. Thus, it seems that it can be considered as an effective adjuvant in vaccine developments against leishmaniasis

    The molecular biology and therapeutic potential of Nrf2 in leukemia

    Get PDF
    NF-E2-related factor 2 (Nrf2) transcription factor has contradictory roles in cancer, which can act as a tumor suppressor or a proto-oncogene in different cell conditions (depending on the cell type and the conditions of the cell environment). Nrf2 pathway regulates several cellular processes, including signaling, energy metabolism, autophagy, inflammation, redox homeostasis, and antioxidant regulation. As a result, it plays a crucial role in cell survival. Conversely, Nrf2 protects cancerous cells from apoptosis and increases proliferation, angiogenesis, and metastasis. It promotes resistance to chemotherapy and radiotherapy in various solid tumors and hematological malignancies, so we want to elucidate the role of Nrf2 in cancer and the positive point of its targeting. Also, in the past few years, many studies have shown that Nrf2 protects cancer cells, especially leukemic cells, from the effects of chemotherapeutic drugs. The present paper summarizes these studies to scrutinize whether targeting Nrf2 combined with chemotherapy would be a therapeutic approach for leukemia treatment. Also, we discussed how Nrf2 and NF-κB work together to control the cellular redox pathway. The role of these two factors in inflammation (antagonistic) and leukemia (synergistic) is also summarized

    Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy

    Get PDF
    The selective and efficient drug delivery to tumor cells can remarkably improve different cancer therapeutic approaches. There are several nanoparticles (NPs) which can act as a potent drug carrier for cancer therapy. However, the specific drug delivery to cancer cells is an important issue which should be considered before designing new NPs for in vivo application. It has been shown that cancer cells over-express folate receptor (FR) in order to improve their growth. As normal cells express a significantly lower levels of FR compared to tumor cells, it seems that folate molecules can be used as potent targeting moieties in different nanocarrier-based therapeutic approaches. Moreover, there is evidence which implies folate-conjugated NPs can selectively deliver anti-tumor drugs into cancer cells both in vitro and in vivo. In this review, we will discuss about the efficiency of different folate-conjugated NPs in cancer therapy.NoneManuscrip

    E2 ubiquitin-conjugating enzymes in cancer: Implications for immunotherapeutic interventions

    Get PDF
    Despite the medical advances of the 21st century, the incidence of cancer continues to increase and the search for a universal cure remains a major health challenge. Our lack of understanding the complex pathophysiology of the tumor microenvironment has hindered the development and efficiency of anti-cancer therapeutic strategies. The tumor microenvironment, composed of multiple cellular and non-cellular components, enables tumor-promoting processes such as proliferation, angiogenesis, migration and invasion, metastasis, and drug resistance. The ubiquitin-mediated degradation system is involved in several physiologic processes including cell cycling, signal transduction, receptor downregulation, endocytosis and transcriptional regulation. Ubiquitination includes attachment of ubiquitin to target proteins via E1 (activating), E2 (conjugating) and E3 (ligating) enzymes. Several studies have shown that E2 enzymes are dysregulated in variety of cancers. Multiple investigations have demonstrated the involvement of E2s in various tumor-promoting processes including DNA repair, cell cycle progression, apoptosis and oncogenic signaling. E2 enzymes consist of 40 members that facilitate ubiquitin-substrate conjugation thereby modulating the stability and interaction of various proteins. As such, E2s are potential biomarkers as diagnostic, prognostic and therapeutic tools. In this review, we discuss the role of E2s in modulating various types of cancer

    Targeted Co-Delivery of Docetaxel and cMET siRNA for Treatment of Mucin1 Overexpressing Breast Cancer Cells

    Get PDF
    Purpose: Targeted treatment of breast cancer through combination of chemotherapeutic agents and siRNA had been drawing much attention in recent researches. This study was carried out to evaluate mucin1 aptamer-conjugated chitosan nanoparticles containing docetaxel and cMET siRNA on SKBR3 cells. Methods: Nano-drugs were characterized by transmission electron microscope, Zetasizer and loading efficiency calculation. siRNA entrapment onto nanoparticles, stability of siRNA-loaded nanoparticles and conjugation of mucin1 aptamer to nanoparticles were evaluated via separate electrophoresis. Cellular uptake of the targeted nanoparticles was evaluated through GFP-plasmid expression in mucin1+ SKBR3 vs. mucin1- CHO cells. Protein expression, cell viability and gene expression were assessed by Western Blotting, MTT assay, and Quantitative Real Time-PCR, respectively. Results: Characterization of nano-drugs represented the ideal size (110.5± 3.9 nm), zeta potential (11.6± 0.8 mV), and loading efficiency of 90.7% and 88.3% for siRNA and docetaxel, respectively. Different gel electrophoresis affirmed the conjugation of aptamers to nanoparticles and entrapment of siRNA onto nanoparticles. Increased cellular uptake of aptamer-conjugated nanoparticles was confirmed by GFP expression. cMET gene silencing was confirmed by Western Blotting. The significant (p ≤0.0001) impact of combination targeted therapy vs. control on cell viability was shown. Results of Quantitative Real Time-PCR represented a remarkably decreased (p ≤0.0001) expression of the studied genes involving in tumorigenicity, metastasis, invasion, and angiogenesis (STAT3, IL8, MMP2, MMP9, and VEGF) by targeted combination treatment vs. control. Conclusion: The mucin1 aptamer-conjugated chitosan nanoparticles, containing docetaxel and cMET siRNA, is suggested for treatment of mucin1+ metastatic breast cancer cells. However, further studies should be conducted on animal models
    • …
    corecore