10 research outputs found

    BIOADHESIVE MULTIPARTICULATE (MICROSPHERS) DRUG DELIVERY SYSTEM: A REVIEW

    Get PDF
    The concept of controlled drug delivery has been traditionally used to obtain specific release rates or targeting of active ingredients. The phenomenon of bioadhesion has been studied extensively in the last decade and applied to improve the performance of these drug delivery systems. Recent advances in polymer science and drug carrier technologies have promulgated the development of novel drug carriers such as bioadhesive microspheres that have boosted the use of “bioadhesion†in drug delivery. This article presents the spectrum of potential applications of bioadhesive microspheres in controlled drug delivery ranging from the small molecules, to peptides, and to the macromolecular drugs such as proteins, oligonucleotides and even DNA. The development of mucus or cell-specific bioadhesive polymers and the concepts of cytoadhesion and bioinvasion provide unprecedented opportunities for targeting drugs to specific cells or intracellular compartments. Developments in the techniques for in vitro and in vivo evaluation of bioadhesive microspheres have also been discussed. Keywords: - Bioadhesion, Bioadhesive Microspheres, Development, Polymers

    Nano-dimensional iron tungstate for super high energy density symmetric supercapacitor with redox electrolyte

    No full text
    In present work, we have developed 2.0 V symmetric supercapacitor with rationally prepared iron tungstate (FeWO4) nanoparticles as electrodes and redox-active electrolyte. It is revealed that the electrochemical performances of FeWO4-system were significantly improved due to the addition of potassium iodide (KI) redox additive in conventional KOH electrolyte in terms of the specific capacitance and energy density. Notably, FeWO4-based symmetric cell with KI-additive shown two-fold enhancement in specific energy (113 Wh/kg) compared with the cell with pristine KOH electrolyte (41.62 Wh/kg). Such an excellent enhancement is attributed to the improvement in the stability of existing KOH electrolyte by KI which influences the strength of OH bond in aqueous media and prevents the breakdown of electrolyte without adversely affecting the redox behavior and on contrary supporting the interactions at the higher potential to produce better results.</p

    Large interspaced layered potassium niobate nanosheet arrays as an ultrastable anode for potassium ion capacitor

    No full text
    Potassium-ion battery (KIB) is a promising technology for large-scale energy storage applications due to their low cost, theoretically high energy density and abundant resources. However, the development of KIBs is hindered by the sluggish K+\ua0transport kinetics and the structural instability of the electrode materials during K+\ua0intercalation/de-intercalation. In the present investigation, we have designed a potassium-ion capacitor (KIC) using layered potassium niobate (K4Nb6O17, KNO) nanosheet arrays as anode and orange-peel derived activated carbons (OPAC) as fast capacitive cathode materials. The systematic electrochemical analysis with the ex-situ characterizations demonstrates that K4Nb6O17-anode exhibits highly stable layered structure with excellent reversibility during K+\ua0insertion/de-insertion. After optimization, the fabricated KNO//OPAC delivers both a high energy density of 116 Wh/kg\ua0and high power density of 10,808 W/kg, which is significantly higher than other similar hybrid devices. The cell also displays long term cycling stability over 5000 cycles, with 87 % of capacity retention. This study highlights the utilization of layered nanosheet arrays of niobates to achieve superior K‐storage for KICs, paving the way towards the development of high‐performance anodes for post lithium‐ion batteries

    Electronic Structure Engineered Heteroatom Doped All Transition Metal Sulfide Carbon Confined Heterostructure for Extrinsic Pseudocapacitor

    No full text
    Ultra-high energy density battery-type materials are promising candidates for supercapacitors (SCs); however, slow ion kinetics and significant volume expansion remain major barriers to their practical applications. To address these issues, hierarchical lattice distorted α-/γ-MnS@CoxSy core-shell heterostructure constrained in the sulphur (S), nitrogen (N) co-doped carbon (C) metal-organic frameworks (MOFs) derived nanosheets (α-/γ-MnS@CoxSy@N, S-C) have been developed. The coordination bonding among CoxSy, and α-/γ-MnS nanoparticles at the interfaces and the π–π stacking interactions developed across α-/γ-MnS@CoxSy and N, S-C restrict volume expansion during cycling. Furthermore, the porous lattice distorted heteroatom-enriched nanosheets contain a sufficient number of active sites to allow for efficient electron transportation. Density functional theory (DFT) confirms the significant change in electronic states caused by heteroatom doping and the formation of core-shell structures, which provide more accessible species with excellent interlayer and interparticle conductivity, resulting in increased electrical conductivity. The α-/γ-MnS@CoxSy@N, S-C electrode exhibits an excellent specific capacity of 277 mA hg−1 and cycling stability over 23 600 cycles. A quasi-solid-state flexible extrinsic pseudocapacitor (QFEPs) assembled using layer-by-layer deposited multi-walled carbon nanotube/Ti3C2TX nanocomposite negative electrode. QFEPs deliver specific energy of 64.8 Wh kg−1 (1.62 mWh cm−3) at a power of 933 W kg−1 and 92% capacitance retention over 5000 cycles.</p

    Proceedings of National Conference on Relevance of Engineering and Science for Environment and Society

    No full text
    This conference proceedings contains articles on the various research ideas of the academic community and practitioners presented at the National Conference on Relevance of Engineering and Science for Environment and Society (R{ES}2 2021). R{ES}2 2021 was organized by Shri Pandurang Pratishthan’s, Karmayogi Engineering College, Shelve, Pandharpur, India on July 25th, 2021. Conference Title: National Conference on Relevance of Engineering and Science for Environment and SocietyConference Acronym: R{ES}2 2021Conference Date: 25 July 2021Conference Location: Online (Virtual Mode)Conference Organizers: Shri Pandurang Pratishthan’s, Karmayogi Engineering College, Shelve, Pandharpur, India
    corecore