5 research outputs found

    Enhanced field emission properties of Au/SnSe nano-heterostructure: a combined experimental and theoretical investigation

    Get PDF
    We report the field emission properties of two-dimensional SnSe nanosheets (NSs) and Au/SnSe nano-heterostructure (NHS) prepared by a simple and economical route of one-pot colloidal and sputtering technique. Field Emission Scanning Electron Microscope (FESEM) analysis reveal surface protrusions and morphology modification of the SnSe NSs by Au deposition. By decorating the SnSe NSs with Au nanoparticles, significant improvement in field emission characteristics were observed. A significant reduction in the turn-on field from 2.25 V/µm for the SnSe NSs to 1.25 V/µm for the Au/SnSe NHS was observed. Emission current density of 300 µA/cm2 has been achieved at an applied field of 4.00 and 1.91 V/µm for SnSe NSs and Au/SnSe NHS, respectively. Analysis of the emission current as a function of time also demonstrated the robustness of the present Au/SnSe NHS. Consistent with the experimental data, our complementary first-principles DFT calculations predict lower work function for the Au/SnSe NHS compared to the SnSe NSs as the primary origin for improved field emission. The present study has evidently provided a rational heterostructure strategy for improving various field emission related applications via surface and electronic modifications of the nanostructures

    Highly efficient field emission properties of vertically aligned 2D CuSe nanosheets: an experimental and theoretical investigation

    Get PDF
    We report the synthesis of klockmannite (CuSe) via a three-probe electrochemical set-up (chronoampereometry). The structural properties are examined by X-ray diffraction and Raman spectroscopy. Field emission scanning electron microscopy (FESEM) analysis revealed the formation of vertically aligned CuSe nanosheets with an average thickness of 34 nm and an average lateral size of 700 nm. The CuSe nanosheets exhibit impressive field electron emission characteristics with a turn-on field of 1.4 V/µm for 10 µA/cm2 emission current density. Also, a high current density of 5.8 mA/cm2 is observed at a relatively low applied field of 3.1 V/µm. Complementary first-principles DFT calculations show that CuSe displays metallic conductivity, and the (001) surface has a low work function of 5.12 eV, which is believed to be responsible for the impressive field emission characteristics

    Uncovering the origin of enhanced field emission properties of rGO–MnO2 heterostructures: a synergistic experimental and computational investigation

    Get PDF
    The unique structural merits of heterostructured nanomaterials including the electronic interaction, interfacial bonding and synergistic effects make them attractive for fabricating highly efficient optoelectronic devices. Herein, we report the synthesis of MnO2 nanorods and a rGO/MnO2 nano-heterostructure using low-cost hydrothermal and modified Hummers' methods, respectively. Detailed characterization and confirmation of the structural and morphological properties are done via X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM). Compared to the isolated MnO2 nanorods, the rGO/MnO2 nano-heterostructure exhibits impressive field emission (FE) performance in terms of the low turn-on field of 1.4 V μm−1 for an emission current density of 10 μA cm−2 and a high current density of 600 μA cm−2 at a relatively very low applied electric field of 3.1 V μm−1. The isolated MnO2 nanorods display a high turn-on field of 7.1 for an emission current density of 10 μA cm−2 and a low current density of 221 μA cm−2 at an applied field of 8.1 V μm−1. Besides the superior FE characteristics of the rGO/MnO2 nano-heterostructure, the emission current remains quite stable over the continuous 2 h period of measurement. The improvement of the FE characteristics of the rGO/MnO2 nano-heterostructure can be ascribed to the nanometric features and the lower work function (6.01 and 6.12 eV for the rGO with 8% and 16% oxygen content) compared to the isolated α-MnO2(100) surface (Φ = 7.22 eV) as predicted from complementary first-principles electronic structure calculations based on density functional theory (DFT) methods. These results suggest that an appropriate coupling of rGO with MnO2 nanorods would have a synergistic effect of lowering the electronic work function, resulting in a beneficial tuning of the FE characteristics

    An interlinked computational-experimental investigation into SnS nano-flakes for field emission application

    Get PDF
    Layered binary semiconductor materials have attracted significant interest as field emitters due to their low work function, mechanical stability, high thermal and electrical conductivity. Herein, we report a systematic experimental and theoretical investigation of SnS nanoflakes synthesized using a simple, low-cost, and non-toxic hot injection method for field emission studies. The field emission studies were carried out on SnS nanoflakes thin film prepared using a simple spin coat technique. The x-ray diffraction (XRD) and Raman spectroscopy analysis revealed an orthorhombic phase of SnS. Scanning electron microscopy (SEM) analysis revealed that as-synthesized SnS has flakes-like morphology. The formation of pure-phase SnS nanoflakes was further confirmed by x-ray photoelectron spectroscopy (XPS) analysis. The UV-Visible-NIR spectroscopy analysis shows that SnS nanoflakes have a sharp absorption edge observed in the UV region and have a band gap of ∼ 1.66 eV. In addition, the first-principles density functional theory (DFT) calculations were carried out to provide atomic-level insights into the crystal structure, band structure, and density of states (DOS) of SnS nanoflakes. The field emission properties of SnS nanoflakes were also investigated and found that SnS nanoflakes have a low turn-on field (∼ 6.2 V/μm for 10 μA/cm2), high emission current density (∼ 104 μA/cm2 at 8.0 V/μm), superior current stability (∼ 2.5 hrs for ∼ 1 μA) and a high field enhancement factor of 1735. The first principle calculations the predicted lower work function of different surfaces, especially for the most stable SnS (001) surface ( = 4.32 eV), is believed to be responsible for the observed facile electron emission characteristics. We anticipate that the SnS could be utilized for future vacuum nano/microelectronic and flat panel display applications due to the low turn-on field and flakes-like structure
    corecore