36 research outputs found

    Selenium metabolism in cancer cells: The combined application of XAS and XFM techniques to the problem of selenium speciation in biological systems

    Get PDF
    Determining the speciation of selenium in vivo is crucial to understanding the biological activity of this essential element, which is a popular dietary supplement due to its anti-cancer properties. Hyphenated techniques that combine separation and detection methods are traditionally and effectively used in selenium speciation analysis, but require extensive sample preparation that may affect speciation. Synchrotron-based X-ray absorption and fluorescence techniques offer an alternative approach to selenium speciation analysis that requires minimal sample preparation. We present a brief summary of some key HPLC-ICP-MS and ESI-MS/MS studies of the speciation of selenium in cells and rat tissues. We review the results of a top-down approach to selenium speciation in human lung cancer cells that aims to link the speciation and distribution of selenium to its biological activity using a combination of X-ray absorption spectroscopy (XAS) and X-ray fluorescence microscopy (XFM). The results of this approach highlight the distinct fates of selenomethionine, methylselenocysteine and selenite in terms of their speciation and distribution within cells: organic selenium metabolites were widely distributed throughout the cells, whereas inorganic selenium metabolites were compartmentalized and associated with copper. New data from the XFM mapping of electrophoretically-separated cell lysates show the distribution of selenium in the proteins of selenomethionine-treated cells. Future applications of this top-down approach are discussed.Claire M. Weekley, Jade B. Aitken, Lydia Finney, Stefan Vogt, Paul K. Witting, and Hugh H. Harri

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Predicting the Outcome of Equine Artificial Inseminations Using Chilled Semen

    No full text
    This study aimed to determine whether an analysis of stallion ejaculate could accurately predict the likelihood of pregnancy resulting from artificial insemination in mares. This study involved 46 inseminations of 41 mares, using 7 standardbred stallions over a 5-week period at an Australian pacing stud. Semen quality was assessed immediately after collection and again after chilling at ~5 °C for 24 h. The assessment involved evaluating ejaculate volume, sperm concentration, and motility parameters using an iSperm® Equine portable device. After the initial evaluation, a subpopulation of cells was subjected to a migration assay through a 5 µm polycarbonate filter within a Samson™ isolation chamber over a 15 min period. The cells were assessed for their concentration, motility parameters, and ability to reduce the membrane impermeant tetrazolium salt WST-1. The data, combined with the stallion and mare’s ages, were used to predict the likelihood of pregnancy, as confirmed by rectal ultrasound sonography performed 14 days post ovulation. The criteria used to predict pregnancy were optimized for each individual stallion, resulting in an overall accuracy of 87.9% if analyzed pre-chilling and 95% if analyzed post-chilling. This study suggests that an analysis of stallion ejaculate can be used to predict the likelihood of pregnancy resulting from artificial insemination in mares with a high level of accuracy

    Arsenic fate following mining of sulfide ore at mine sites and significance of the reduced state

    No full text
    Arsenic fate at mine sites is influenced by the reduced state of the ore. Comparison of arsenic speciation using XANES spectra with known arsenic compounds of ore from various lead and copper sulfidic mines with tailings from their processing shows that there is a significant difference when comparing near surface or shallow ore with deep mined ore. Subsequent comparison with tailings from different mined sulfidic ores, using XANES scan fitting is useful for understanding the chemical form of As in such samples

    Bromide ion binding by a dinuclear gold(I) N-heterocyclic carbene complex : a spectrofluorescence and X-ray absorption spectroscopic study

    Get PDF
    Fluorescence and X-ray absorption spectroscopy were used to investigate the anion binding properties of a luminescent, dinuclear Au(I) N-heterocyclic carbene (NHC) complex ([1]²⁺) with a short Au(I)···Au(I) contact. The addition of Br(-) ions to a DMSO solution of [1](PF₆)₂ caused a red-shift in the fluorescence emission band from 396 nm to 496 nm. Similarly, the addition of Br(-) ions to [1](PF₆)₂ caused a decrease in the energy of the Au L₃-edge in the X-ray absorption spectrum, consistent with the formation of an association complex between the cation [1]²⁺ and Br(-) ions. Solution-based structural studies of the association complex were carried out using extended X-ray absorption fine structure (EXAFS) modelling of the Au(I)···Au(I) core of the cation. These studies indicate that the association complex results from Au(I)···Br(-) interactions, with the Br(-) ions occupying two partially occupied sites at ~2.9 and 3.9 Å from the Au(I) atoms.8 page(s

    Relationship of arsenic speciation and bioavailability in mine wastes for human health risk assessment

    No full text
    Environmental context X-ray absorption near-edge spectroscopy (XANES) was applied to give arsenic chemical forms directly in the solid phase of mine wastes from two mine sites, including fluvial dispersion. The arsenic speciation data explained the variation of in vitro bioaccessibility and in vivo bioavailability (rat uptake) data of the mine wastes. The As speciation from XANES fitting supported the hypothesis that when soil intake is adjusted for bioaccessibility, the potential health risk estimate to local residents is significantly lower. Abstract X-ray absorption near-edge spectroscopy (XANES) was used for arsenic speciation in mine processing and waste samples from two mines in northern Australia. XANES fitting of model compound spectra to samples was used, in combination with in vitro bioaccessibility data for the pure compounds, to predict bioaccessibility of each mine waste sample (Pearson's correlation R2≤0.756, n≤51). The XANES fitting data for a smaller set of the samples (n≤12) were compared with in vivo bioavailability and in vitro bioaccessibility data. The bioavailability of arsenic (As) in the mine wastes, which is dependent, at least in part, on its oxidation state, was found to b

    The Fe-heme structure of met-indoleamine 2,3-dioxygenase-2 determined by X-ray absorption fine structure

    No full text
    Multiple-scattering (MS) analysis of EXAFS data on met-indoleamine 2,3-dioxygenase-2 (IDO2) and analysis of XANES have provided the first direct structural information about the axial donor ligands of the iron center for this recently discovered protein. At 10 K, it exists in a low-spin bis(His) form with Fe–Np(av) = 1.97 Å, the Fe–NIm bond lengths of 2.11 Å and 2.05 Å, which is in equilibrium with a high-spin form at room temperature. The bond distances in the low-spin form are consistent with other low-spin hemeproteins, as is the XANES spectrum, which is closer to that of the low-spin met-Lb than that of the high-spin met-Mb. The potential physiological role of this spin equilibrium is discussed

    Synthesis and biological evaluation of a class of mitochondrially-targeted gadolinium(III) agents

    Get PDF
    A structure–activity relationship study of a library of novel bifunctional GdIII complexes covalently linked to arylphosphonium cations is reported. Such complexes have been designed for potential application in binary cancer therapies such as neutron capture therapy and photon activation therapy. A positive correlation was found between lipophilicity and cytotoxicity of the complexes. Mitochondria uptake was determined by means of inductively coupled plasma mass spectrometry (ICP‐MS), and Gd uptake was determined by means of quantification using synchrotron X‐ray fluorescence (XRF) imaging. A negative correlation between lipophilicity and tumour selectivity of the GdIII complexes was demonstrated. This study highlights the delicate balance required to minimise in vitro cytotoxicity and optimise in vitro tumour selectivity and mitochondrial localisation for this new class of mitochondrially‐targeted binary therapy agents. We also report the highest in vitro tumour selectivity for any Gd agent reported to date, with a T/N (tumour/normal cell) ratio of up to 23.5±6.6.Australian Research Council (ARC

    Methylselenocysteine Treatment Leads to Diselenide Formation in Human Cancer Cells: Evidence from X-ray Absorption Spectroscopy Studies

    No full text
    The selenoamino acids methylselenocysteine (MeSeCys) and selenomethionine (SeMet) have disparate efficacies as anticancer agents. Herein, we use X-ray absorption spectroscopy to determine the chemical form of selenium in human neuroblastoma cells. Cells treated with MeSeCys contain a significant diselenide component, which is absent from SeMet-treated cells and suggests that metabolites of MeSeCys are capable of altering the redox status of the cells. The differences in the speciation of Se in the selenoamino acid-treated cells may provide insight into the differing anticancer activities of MeSeCys and SeMet
    corecore