11,999 research outputs found

    Scale-factor duality in string Bianchi cosmologies

    Get PDF
    We apply the scale factor duality transformations introduced in the context of the effective string theory to the anisotropic Bianchi-type models. We find dual models for all the Bianchi-types [except for types VIIIVIII and IXIX] and construct for each of them its explicit form starting from the exact original solution of the field equations. It is emphasized that the dual Bianchi class BB models require the loss of the initial homogeneity symmetry of the dilatonic scalar field.Comment: 18 pages, no figure

    Ripples in Tapped or Blown Powder

    Full text link
    We observe ripples forming on the surface of a granular powder in a container submitted from below to a series of brief and distinct shocks. After a few taps, the pattern turns out to be stable against any further shock of the same amplitude. We find experimentally that the characteristic wavelength of the pattern is proportional to the amplitude of the shocks. Starting from consideration involving Darcy's law for air flow through the porous granulate and avalanche properties, we build up a semi-quantitative model which fits satisfactorily the set of experimental observations as well as a couple of additional experiments.Comment: 7 pages, four postscript figures, submitted PRL 11/19/9

    Quantization of Fayet-Iliopoulos Parameters in Supergravity

    Full text link
    In this short note we discuss quantization of the Fayet-Iliopoulos parameter in supergravity theories. We argue that in supergravity, the Fayet-Iliopoulos parameter determines a lift of the group action to a line bundle, and such lifts are quantized. Just as D-terms in rigid N=1 supersymmetry are interpreted in terms of moment maps and symplectic reductions, we argue that in supergravity the quantization of the Fayet-Iliopoulos parameter has a natural understanding in terms of linearizations in geometric invariant theory (GIT) quotients, the algebro-geometric version of symplectic quotients.Comment: 21 pages, utarticle class; v2: typos and tex issue fixe

    Resampling technique applied to statistics of microsegregation characterization

    Get PDF
    Characterization of chemical heterogeneities at the dendrite scale is of practical importance for understanding phase transformation either during solidification or during subsequent solid-state treatment. Spot analysis with electron probe is definitely well-suited to investigate such heterogeneities at the micron scale that is relevant for most solidified products. However, very few has been done about the statistics of experimental solute distributions gained from such analyses when they are now more and more used for validating simulation data. There are two main sources generating discrepancies between estimated and actual solute distributions in an alloy: i) data sampling with a limited number of measurements to keep analysis within a reasonable time length; and ii) uncertainty linked to the measurement process, namely the physical noise that accompanies X-ray emission. Focusing on the first of these sources, a few 2-D composition images have been generated by phase field modelling of a Mg-Al alloy. These images were then used to obtain "true" solute distributions to which to compare coarse grid analyses as generally performed with a microanalyser. Resampling, i.e. generating several distributions by grid analyses with limited number of picked-up values, was then used to get statistics of estimates of solute distribution. The discussion of the present results deals first with estimating the average solute content and then focuses on the distribution in the primary phase

    Strengthening science capacity in Tanzania : an impact analysis of IFS support

    Get PDF

    Multi-Hamiltonian structures for r-matrix systems

    Full text link
    For the rational, elliptic and trigonometric r-matrices, we exhibit the links between three "levels" of Poisson spaces: (a) Some finite-dimensional spaces of matrix-valued holomorphic functions on the complex line; (b) Spaces of spectral curves and sheaves supported on them; (c) Symmetric products of a surface. We have, at each level, a linear space of compatible Poisson structures, and the maps relating the levels are Poisson. This leads in a natural way to Nijenhuis coordinates for these spaces. At level (b), there are Hamiltonian systems on these spaces which are integrable for each Poisson structure in the family, and which are such that the Lagrangian leaves are the intersections of the symplective leaves over the Poisson structures in the family. Specific examples include many of the well-known integrable systems.Comment: 26 pages, Plain Te
    • …
    corecore