2 research outputs found
Cross-Reactivity of Virus-Specific CD8+ T Cells Against Allogeneic HLA-C: Possible Implications for Pregnancy Outcome
Heterologous immunity of virus-specific T cells poses a potential barrier to transplantation tolerance. Cross-reactivity to HLA-A and -B molecules has broadly been described, whereas responses to allo-HLA-C have remained ill defined. In contrast to the transplant setting, HLA-C is the only polymorphic HLA molecule expressed by extravillous trophoblasts at the maternal-fetal interface during pregnancy. Uncontrolled placental viral infections, accompanied by a pro-inflammatory milieu, can alter the activation status and stability of effector T cells. Potential cross-reactivity of maternal decidual virus-specific T cells to fetal allo-HLA-C may thereby have detrimental consequences for the success of pregnancy. To explore the presence of cross-reactivity to HLA-C and the other non-classical HLA antigens expressed by trophoblasts, HLA-A and -B-restricted CD8+ T cells specific for Epstein-Barr virus, Cytomegalovirus, Varicella-Zoster virus, and Influenza virus were tested against target cells expressing HLA-C, -E, and -G molecules. An HLA-B*08:01-restricted EBV-specific T cell clone displayed cross-reactivity against HLA-C*01:02. Furthermore, cross-reactivity of HLA-C-restricted virus-specific CD8+ T cells was observed for HCMV HLA-C*06:02/TRA CD8+ T cell lines and clones against HLA-C*03:02. Collectively, these results demonstrate that cross-reactivity against HLA-C can occur and thereby may affect pregnancy outcome
Increased HLA-G Expression in Term Placenta of Women with a History of Recurrent Miscarriage Despite Their Genetic Predisposition to Decreased HLA-G Levels
Human leukocyte antigen (HLA)-G is an immune modulating molecule that is present on fetal extravillous trophoblasts at the fetal-maternal interface. Single nucleotide polymorphisms (SNPs) in the 3 prime untranslated region (3′UTR) of the HLA-G gene can affect the level of HLA-G expression, which may be altered in women with recurrent miscarriages (RM). This case-control study included 23 women with a medical history of three or more consecutive miscarriages who delivered a child after uncomplicated pregnancy, and 46 controls with uncomplicated pregnancy. Genomic DNA was isolated to sequence the 3′UTR of HLA-G. Tissue from term placentas was processed to quantify the HLA-G protein and mRNA levels. The women with a history of RM had a lower frequency of the HLA-G 3′UTR 14-bp del/del genotype as compared to controls (Odds ratio (OR) 0.28; p = 0.039), which has previously been related to higher soluble HLA-G levels. Yet, HLA-G protein (OR 6.67; p = 0.006) and mRNA (OR 6.33; p = 0.010) expression was increased in term placentas of women with a history of RM as compared to controls. In conclusion, during a successful pregnancy, HLA-G expression is elevated in term placentas from women with a history of RM as compared to controls, despite a genetic predisposition that is associated with decreased HLA-G levels. These findings suggest that HLA-G upregulation could be a compensatory mechanism in the occurrence of RM to achieve an ongoing pregnancy