11 research outputs found

    Propagating Polaritons in III-Nitride Slab Waveguides

    Full text link
    We report on III-nitride waveguides with c-plane GaN/AlGaN quantum wells in the strong light-matter coupling regime supporting propagating polaritons. They feature a normal mode splitting as large as 60 meV at low temperatures thanks to the large overlap between the optical mode and the active region, a polariton decay length up to 100 μ\mum for photon-like polaritons and lifetime of 1-2 ps; with the latter values being essentially limited by residual absorption occurring in the waveguide. The fully lattice-matched nature of the structure allows for very low disorder and high in-plane homogeneity; an important asset for the realization of polaritonic integrated circuits that could support nonlinear polariton wavepackets up to room temperature thanks to the large exciton binding energy of 40 meV

    Exciton hopping probed by picosecond time-resolved cathodoluminescence

    Get PDF
    The exciton transport is studied in high quality ZnO microwires using time resolved cathodoluminescence. Owing to the available picosecond temporal and nanometer spatial resolution, a direct estimation of the exciton average speed has been measured. When raising the temperature, a strong decrease of the effective exciton mobility (hopping speed of donor-bound excitons) has been observed in the absence of any remarkable change in the effective lifetime of excitons. Additionally, the exciton hopping speed was observed to be independent of the strain gradient value, revealing the hopping nature of exciton movement. These experimental results are in good agreement with the behavior predicted for impurity-bound excitons in our previously published theoretical model based on Monte-Carlo simulations, suggesting the hopping process as the main transport mechanism of impurity-bound excitons at low temperatures

    High-temperature Mott transition in wide-band-gap semiconductor quantum wells

    Get PDF
    The crossover from an exciton gas to an electron-hole plasma is studied in a GaN/(Al,Ga)N single quantum well by means of combined time-resolved and continuous-wave photoluminescence measurements. The two-dimensional Mott transition is found to be of continuous type and to be accompanied by a characteristic modification of the quantum well emission spectrum. Beyond the critical density, the latter is strongly influenced by band-gap renormalization and Fermi filling of continuum states. Owing to the large binding energy of excitons in III-nitride heterostructures, their injection-induced dissociation could be tracked over a wide range of temperatures, i.e., from 4 to 150K. Various criteria defining the Mott transition are examined, which, however, do not lead to any clear trend with rising temperature: the critical carrier density remains invariant around 1012cm−2

    Inhomogeneous spatial distribution of non radiative recombination centers in GaN/InGaN nanowire heterostructures studied by cathodoluminescence

    No full text
    International audienceAbstract In order to elucidate the mechanisms responsible for cathodoluminescence intensity variations at the scale of single InGaN/GaN nanowire heterostructures, a methodology is proposed based on a statistical analysis on ensembles of several hundreds of nanowires exhibiting a diameter of 180, 240 and 280 nm. For 180 nm diameter, we find that intensitiy variations are consistent with incorporation of point defects obeying Poisson’s statistics. For wider diameters, intensity variations at the scale of single NWs are observed and assigned to local growth conditions fluctuations. Finally, for the less luminescent nanowires, a departure from Poisson’s statistics is observed suggesting the possible clustering of non independent point defects

    Ultrathin GaN quantum wells in AlN nanowires for UV-C emission

    No full text
    International audienceAbstract Molecular beam epitaxy growth and optical properties of GaN quantum disks in AlN nanowires were investigated, with the purpose of controlling the emission wavelength of AlN nanowire-based light emitting diodes. Besides GaN quantum disks with a thickness ranging from 1 to 4 monolayers, a special attention was paid to incomplete GaN disks exhibiting lateral confinement. Their emission consists of sharp lines which extend down to 215 nm, in the vicinity of AlN band edge. The room temperature cathodoluminescence intensity of an ensemble of GaN quantum disks embedded in AlN nanowires is about 20 % of the low temperature value, emphasizing the potential of ultrathin/incomplete GaN quantum disks for deep UV emission

    Investigation of the Impact of Point Defects in InGaN/GaN Quantum Wells with High Dislocation Densities

    No full text
    In this work, we report on the efficiency of single InGaN/GaN quantum wells (QWs) grown on thin (9 cm−2) is much lower than that of TD (2–3 × 1010 cm−2). Time-resolved photoluminescence and cathodoluminescence studies confirm the prevalence of point defects over TDs in QW efficiency. Interestingly, TD terminations lead to the formation of independent domains for carriers, thanks to V-pits and step bunching phenomena
    corecore