4,737 research outputs found
Interface dynamics and crystal phase switching in GaAs nanowires.
Controlled formation of non-equilibrium crystal structures is one of the most important challenges in crystal growth. Catalytically grown nanowires are ideal systems for studying the fundamental physics of phase selection, and could lead to new electronic applications based on the engineering of crystal phases. Here we image gallium arsenide (GaAs) nanowires during growth as they switch between phases as a result of varying growth conditions. We find clear differences between the growth dynamics of the phases, including differences in interface morphology, step flow and catalyst geometry. We explain these differences, and the phase selection, using a model that relates the catalyst volume, the contact angle at the trijunction (the point at which solid, liquid and vapour meet) and the nucleation site of each new layer of GaAs. This model allows us to predict the conditions under which each phase should be observed, and use these predictions to design GaAs heterostructures. These results could apply to phase selection in other nanowire systems.D.J., S.L. and K.A.D. acknowledge financial support from the Knut and Alice Wallenberg Foundation (KAW), the Swedish Research Council (VR) and the Nanometer Structure Consortium at Lund University (nmC@LU). F.P. and S.H. acknowledge support from ERC Grant 279342: InSituNANO. We acknowledge A. Ellis for technical support.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nature1714
Design of a high power production target for the Beam Dump Facility at CERN
The Beam Dump Facility (BDF) project is a proposed general-purpose facility
at CERN, dedicated to beam dump and fixed target experiments. In its initial
phase, the facility is foreseen to be exploited by the Search for Hidden
Particles (SHiP) experiment. Physics requirements call for a pulsed 400 GeV/c
proton beam as well as the highest possible number of protons on target (POT)
each year of operation, in order to search for feebly interacting particles.
The target/dump assembly lies at the heart of the facility, with the aim of
safely absorbing the full high intensity Super Proton Synchrotron (SPS) beam,
while maximizing the production of charmed and beauty mesons. High-Z materials
are required for the target/dump, in order to have the shortest possible
absorber and reduce muon background for the downstream experiment. The high
average power deposited on target (305 kW) creates a challenge for heat
removal. During the BDF facility Comprehensive Design Study (CDS), launched by
CERN in 2016, extensive studies have been carried out in order to define and
assess the target assembly design. These studies are described in the present
contribution, which details the proposed design of the BDF production target,
as well as the material selection process and the optimization of the target
configuration and beam dilution. One of the specific challenges and novelty of
this work is the need to consider new target materials, such as a molybdenum
alloy (TZM) as core absorbing material and Ta2.5W as cladding.
Thermo-structural and fluid dynamics calculations have been performed to
evaluate the reliability of the target and its cooling system under beam
operation. In the framework of the target comprehensive design, a preliminary
mechanical design of the full target assembly has also been carried out,
assessing the feasibility of the whole target system.Comment: 17 pages, 18 figure
Shotgun Phage Display - Selection for Bacterial Receptins or other Exported Proteins
Shotgun phage display cloning involves construction of libraries from randomly fragmented bacterial chromosomal DNA, cloned genes, or eukaryotic cDNAs, into a phagemid vector. The library obtained consists of phages expressing polypeptides corresponding to all genes encoded by the organism, or overlapping peptides derived from the cloned gene. From such a library, polypeptides with affinity for another molecule can be isolated by affinity selection, panning. The technique can be used to identify bacterial receptins and identification of their minimal binding domain, and but also to identify epitopes recognised by antibodies. In addition, after modification of the phagemid vector, the technique has also been used to identify bacterial extracytoplasmic proteins
Business development in renewable energy
This paper discusses how to foster development of renewable energy business. Factors that impede or enhance renewable energy in the EU 27 member states in the period 1998â2008 are analyzed. Nine factors are considered: population density, production output and energy sector output to indicate market conditions, public total expenditures, subsidies and environmental protection expenditures to indicate institutional conditions, R&D, share of students in population and venture capital to indicate firmâs resources. Scarce space for business development and vested energy interests are the main impediments. R&D and venture capital are main drivers. The US and EU support for R&D and venture capital in renewable energy are compared. The US support is larger and mainly based on R&D grants. It has generated large, innovative enterprises. The EU support is mainly based on price guarantees for renewable energy delivery to grid. It has generated many enterprises. Building capabilities through stakeholdersâ networks in early phase of business development and clusters in the later phase is recommended
Neutrino tomography - Learning about the Earth's interior using the propagation of neutrinos
Because the propagation of neutrinos is affected by the presence of Earth
matter, it opens new possibilities to probe the Earth's interior. Different
approaches range from techniques based upon the interaction of high energy
(above TeV) neutrinos with Earth matter, to methods using the MSW effect on the
neutrino oscillations of low energy (MeV to GeV) neutrinos. In principle,
neutrinos from many different sources (sun, atmosphere, supernovae, beams etc.)
can be used. In this talk, we summarize and compare different approaches with
an emphasis on more recent developments. In addition, we point out other
geophysical aspects relevant for neutrino oscillations.Comment: 22 pages, 9 figures. Proceedings of ``Neutrino sciences 2005:
Neutrino geophysics'', December 14-16, 2005, Honolulu, USA. Minor changes,
some references added. Final version to appear in Earth, Moon, and Planet
Measuring CP violation and mass ordering in joint long baseline experiments with superbeams
We propose to measure the CP phase , the magnitude of the
neutrino mixing matrix element and the sign of the atmopheric scale
mass--squared difference with a superbeam by the joint
analysis of two different long baseline neutrino oscillation experiments. One
is a long baseline experiment (LBL) at 300 km and the other is a very long
baseline (VLBL) experiment at 2100 km. We take the neutrino source to be the
approved high intensity proton synchrotron, HIPA. The neutrino beam for the LBL
is the 2-degree off-axis superbeam and for the VLBL, a narrow band superbeam.
Taking into account all possible errors, we evaluate the event rates required
and the sensitivities that can be attained for the determination of
and the sign of . We arrive at a
representative scenario for a reasonably precise probe of this part of the
neutrino physics.Comment: 25 RevTEX pages, 16 PS figures, revised figure captions and
references adde
Antimony-doped graphene nanoplatelets
Heteroatom doping into the graphitic frameworks have been intensively studied for the development of metal-free electrocatalysts. However, the choice of heteroatoms is limited to non-metallic elements and heteroatom-doped graphitic materials do not satisfy commercial demands in terms of cost and stability. Here we realize doping semimetal antimony (Sb) at the edges of graphene nanoplatelets (GnPs) via a simple mechanochemical reaction between pristine graphite and solid Sb. The covalent bonding of the metalloid Sb with the graphitic carbon is visualized using atomic-resolution transmission electron microscopy. The Sb-doped GnPs display zero loss of electrocatalytic activity for oxygen reduction reaction even after 100,000 cycles. Density functional theory calculations indicate that the multiple oxidation states (Sb3+ and Sb5+) of Sb are responsible for the unusual electrochemical stability. Sb-doped GnPs may provide new insights and practical methods for designing stable carbon-based electrocatalystsclose0
- âŠ