29 research outputs found

    Modelling Planck-scale Lorentz violation via analogue models

    Full text link
    Astrophysical tests of Planck-suppressed Lorentz violations had been extensively studied in recent years and very stringent constraints have been obtained within the framework of effective field theory. There are however still some unresolved theoretical issues, in particular regarding the so called "naturalness problem" - which arises when postulating that Planck-suppressed Lorentz violations arise only from operators with mass dimension greater than four in the Lagrangian. In the work presented here we shall try to address this problem by looking at a condensed-matter analogue of the Lorentz violations considered in quantum gravity phenomenology. Specifically, we investigate the class of two-component BECs subject to laser-induced transitions between the two components, and we show that this model is an example for Lorentz invariance violation due to ultraviolet physics. We shall show that such a model can be considered to be an explicit example high-energy Lorentz violations where the ``naturalness problem'' does not arise.Comment: Talk given at the Fourth Meeting on Constrained Dynamics and Quantum Gravity (QG05), Cala Gonone (Sardinia, Italy) September 12-16, 200

    Lorentz Invariance and the semiclassical approximation of loop quantum gravity

    Full text link
    It is shown that the field equations derived from an effective interaction hamiltonian for Maxwell and gravitational fields in the semiclassical approximation of loop quantum gravity using rotational invariant states (such as weave states) are Lorentz invariant. To derive this result, which is in agreement with the observational evidence, we use the geometrical properties of the electromagnetic field.Comment: 6 page

    Threshold configurations in the presence of Lorentz violating dispersion relations

    Full text link
    A general characterization of lower and upper threshold configurations for two particle reactions is determined under the assumptions that the single particle dispersion relations E(p) are rotationally invariant and monotonic in p, and that energy and momentum are conserved and additive for multiple particles. It is found that at a threshold the final particle momenta are always parallel and the initial momenta are always anti-parallel. The occurrence of new phenomena not occurring in a Lorentz invariant setting, such as upper thresholds and asymmetric pair production thresholds, is explained, and an illustrative example is given.Comment: 5 pages, 3 figure

    Modified Dispersion Relations from the Renormalization Group of Gravity

    Get PDF
    We show that the running of gravitational couplings, together with a suitable identification of the renormalization group scale can give rise to modified dispersion relations for massive particles. This result seems to be compatible with both the frameworks of effective field theory with Lorentz invariance violation and deformed special relativity. The phenomenological consequences depend on which of the frameworks is assumed. We discuss the nature and strength of the available constraints for both cases and show that in the case of Lorentz invariance violation, the theory would be strongly constrained.Comment: revtex4, 9 pages, updated to match published versio

    Testing Lorentz invariance of dark matter

    Full text link
    We study the possibility to constrain deviations from Lorentz invariance in dark matter (DM) with cosmological observations. Breaking of Lorentz invariance generically introduces new light gravitational degrees of freedom, which we represent through a dynamical timelike vector field. If DM does not obey Lorentz invariance, it couples to this vector field. We find that this coupling affects the inertial mass of small DM halos which no longer satisfy the equivalence principle. For large enough lumps of DM we identify a (chameleon) mechanism that restores the inertial mass to its standard value. As a consequence, the dynamics of gravitational clustering are modified. Two prominent effects are a scale dependent enhancement in the growth of large scale structure and a scale dependent bias between DM and baryon density perturbations. The comparison with the measured linear matter power spectrum in principle allows to bound the departure from Lorentz invariance of DM at the per cent level.Comment: 42 pages, 9 figure

    Einstein-aether as a quantum effective field theory

    Full text link
    The possibility that Lorentz symmetry is violated in gravitational processes is relatively unconstrained by experiment, in stark contrast with the level of accuracy to which Lorentz symmetry has been confirmed in the matter sector. One model of Lorentz violation in the gravitational sector is Einstein-aether theory, in which Lorentz symmetry is broken by giving a vacuum expectation value to a dynamical vector field. In this paper we analyse the effective theory for quantised gravitational and aether perturbations. We show that this theory possesses a controlled effective expansion within dimensional regularisation, that is, for any process there are a finite number of Feynman diagrams which will contribute to a given order of accuracy. We find that there is no log-running of the two-derivative phenomenological parameters, justifying the use of experimental constraints for these parameters obtained over many orders of magnitude in energy scale. Given the stringent experimental bounds on two-derivative Lorentz-violating operators, we estimate the size of matter Lorentz-violation which arises due to loop effects. This amounts to an estimation of the natural size of coefficients for Lorentz-violating dimension-six matter operators, which in turn can be used to obtain a new bound on the two-derivative parameters of this theory.Comment: 21 page

    Signature change events: A challenge for quantum gravity?

    Full text link
    Within the framework of either Euclidian (functional-integral) quantum gravity or canonical general relativity the signature of the manifold is a priori unconstrained. Furthermore, recent developments in the emergent spacetime programme have led to a physically feasible implementation of signature change events. This suggests that it is time to revisit the sometimes controversial topic of signature change in general relativity. Specifically, we shall focus on the behaviour of a quantum field subjected to a manifold containing regions of different signature. We emphasise that, regardless of the underlying classical theory, there are severe problems associated with any quantum field theory residing on a signature-changing background. (Such as the production of what is naively an infinite number of particles, with an infinite energy density.) From the viewpoint of quantum gravity phenomenology, we discuss possible consequences of an effective Lorentz symmetry breaking scale. To more fully understand the physics of quantum fields exposed to finite regions of Euclidean-signature (Riemannian) geometry, we show its similarities with the quantum barrier penetration problem, and the super-Hubble horizon modes encountered in cosmology. Finally we raise the question as to whether signature change transitions could be fully understood and dynamically generated within (modified) classical general relativity, or whether they require the knowledge of a full theory of quantum gravity.Comment: 33 pages. 4 figures; V2: 3 references added, no physics changes; V3: now 24 pages - significantly shortened - argument simplified and more focused - no physics changes - this version accepted for publication in Classical and Quantum Gravit

    Shape in an Atom of Space: Exploring quantum geometry phenomenology

    Full text link
    A phenomenology for the deep spatial geometry of loop quantum gravity is introduced. In the context of a simple model, an atom of space, it is shown how purely combinatorial structures can affect observations. The angle operator is used to develop a model of angular corrections to local, continuum flat-space 3-geometries. The physical effects involve neither breaking of local Lorentz invariance nor Planck scale suppression, but rather reply on only the combinatorics of SU(2) recoupling. Bhabha scattering is discussed as an example of how the effects might be observationally accessible.Comment: 14 pages, 7 figures; v2 references adde
    corecore