15,612 research outputs found

    Mechanics of universal horizons

    Full text link
    Modified gravity models such as Ho\v{r}ava-Lifshitz gravity or Einstein-{\ae}ther theory violate local Lorentz invariance and therefore destroy the notion of a universal light cone. Despite this, in the infrared limit both models above possess static, spherically symmetric solutions with "universal horizons" - hypersurfaces that are causal boundaries between an interior region and asymptotic spatial infinity. In other words, there still exist black hole solutions. We construct a Smarr formula (the relationship between the total energy of the spacetime and the area of the horizon) for such a horizon in Einstein-{\ae}ther theory. We further show that a slightly modified first law of black hole mechanics still holds with the relevant area now a cross-section of the universal horizon. We construct new analytic solutions for certain Einstein-{\ae}ther Lagrangians and illustrate how our results work in these exact cases. Our results suggest that holography may be extended to these theories despite the very different causal structure as long as the universal horizon remains the unique causal boundary when matter fields are added.Comment: Minor clarifications. References update

    The Spectrum of Crab Nebula X-Rays to 120 Kev

    Get PDF
    Counting rate and pulse height distribution spectral data of Crab Nebula telemetered from balloon detector

    s-Processing in the Galactic Disk. I. Super-Solar Abundances of Y, Zr, La, Ce in Young Open Clusters

    Full text link
    In a recent study, based on homogeneous barium abundance measurements in open clusters, a trend of increasing [Ba/Fe] ratios for decreasing cluster age was reported. We present here further abundance determinations, relative to four other elements hav- ing important s-process contributions, with the aim of investigating whether the growth found for [Ba/Fe] is or not indicative of a general property, shared also by the other heavy elements formed by slow neutron captures. In particular, we derived abundances for yttrium, zirconium, lanthanum and cerium, using equivalent widths measurements and the MOOG code. Our sample includes 19 open clusters of different ages, for which the spectra were obtained at the ESO VLT telescope, using the UVES spectrometer. The growth previously suggested for Ba is confirmed for all the elements analyzed in our study. This fact implies significant changes in our views of the Galactic chemical evolution for elements beyond iron. Our results necessarily require that very low-mass AGB stars (M < 1.5M\odot) produce larger amounts of s-process elements (hence acti- vate the 13 C-neutron source more effectively) than previously expected. Their role in producing neutron-rich elements in the Galactic disk has been so far underestimated and their evolution and neutron-capture nucleosynthesis should now be reconsidered.Comment: ApJ accepte

    On the effects of the Dvali-Gabadadze-Porrati braneworld gravity on the orbital motion of a test particle

    Full text link
    In this paper we explicitly work out the secular perturbations induced on all the Keplerian orbital elements of a test body to order O(e^2) in the eccentricity e by the weak-field long-range modifications of the usual Newton-Einstein gravity due to the Dvali-Gabadadze-Porrati (DGP) braneworld model. The Gauss perturbative scheme is used. It turns out that the argument of pericentre and the mean anomaly are affected by secular rates which are independent of the semimajor axis of the orbit of the test particle. The first nonvaishing eccentricity-dependent corrections are of order O(e^2). For circular orbits the Lue-Starkman (LS) effect on the pericentre is obtained. Some observational consequences are discussed for the Solar System planetary mean longitudes lambda which would undergo a 1.2\cdot 10^-3 arcseconds per century braneworld secular precession. According to recent data analysis over 92 years for the EPM2004 ephemerides, the 1-sigma formal accuracy in determining the Martian mean longitude amounts to 3\cdot 10^-3 milliarcseconds, while the braneworld effect over the same time span would be 1.159 milliarcseconds. The major limiting factor is the 2.6\cdot 10^-3 arcseconds per century systematic error due to the mismodelling in the Keplerian mean motion of Mars. A suitable linear combination of the mean longitudes of Mars and Venus may overcome this problem. The formal, 1-sigma obtainable observational accuracy would be \sim 7%. The systematic error due to the present-day uncertainties in the solar quadrupole mass moment, the Keplerian mean motions, the general relativistic Schwarzschild field and the asteroid ring would amount to some tens of percent.Comment: LaTex2e, 23 pages, 5 tables, 1 figure, 37 references. Second-order corrections in eccentricity explicitly added. Typos corrected. References update

    Work function determination of promising electrode materials for thermionic energy converters

    Get PDF
    The work function determinations of candidate materials for low temperature (1400 K) thermionics through vacuum emission tests are discussed. Two systems, a vacuum emission test vehicle and a thermionic emission microscope are used for emission measurements. Some nickel and cobalt based super alloys were preliminarily examined. High temperature physical properties and corrosion behavior of some super alloy candidates are presented. The corrosion behavior of sodium is of particular interest since topping cycles might use sodium heat transfer loops. A Marchuk tube was designed for plasma discharge studies with the carbide and possibly some super alloy samples. A series of metal carbides and other alloys were fabricated and tested in a special high temperature mass spectrometer. This information coupled with work function determinations was evaluated in an attempt to learn how electron bonding occurs in transition alloys

    Collapse of Kaluza-Klein Bubbles

    Full text link
    Kaluza-Klein theory admits ``bubble" configurations, in which the circumference of the fifth dimension shrinks to zero on some compact surface. A three parameter family of such bubble initial data at a moment of time-symmetry (some including a magnetic field) has been found by Brill and Horowitz, generalizing the (zero-energy) ``Witten bubble" solution. Some of these data have negative total energy. We show here that all the negative energy bubble solutions start out expanding away from the moment of time symmetry, while the positive energy bubbles can start out either expanding or contracting. Thus it is unlikely that the negative energy bubbles would collapse and produce a naked singularity.Comment: 6 pages, plain LaTeX, UMDGR-94-08

    General covariance, and supersymmetry without supersymmetry

    Get PDF
    An unusual four-dimensional generally covariant and supersymmetric SU(2) gauge theory is described. The theory has propagating degrees of freedom, and is invariant under a local (left-handed) chiral supersymmetry, which is half the supersymmetry of supergravity. The Hamiltonian 3+1 decomposition of the theory reveals the remarkable feature that the local supersymmetry is a consequence of Yang-Mills symmetry, in a manner reminiscent of how general coordinate invariance in Chern-Simons theory is a consequence of Yang-Mills symmetry. It is possible to write down an infinite number of conserved currents, which strongly suggests that the theory is classically integrable. A possible scheme for non-perturbative quantization is outlined. This utilizes ideas that have been developed and applied recently to the problem of quantizing gravity.Comment: 17 pages, RevTeX, two minor errors correcte

    Bound on the Dark Matter Density in the Solar System from Planetary Motions

    Get PDF
    High precision planet orbital data extracted from direct observation, spacecraft explorations and laser ranging techniques enable to put a strong constraint on the maximal dark matter density of a spherical halo centered around the Sun. The maximal density at Earth's location is of the order 10510^5 GeV/cm3{\rm GeV/cm^3} and shows only a mild dependence on the slope of the halo profile, taken between 0 and -2. This bound is somewhat better than that obtained from the perihelion precession limits.Comment: 7 pages, 1 figur
    • …
    corecore